Basic seminar II A

-+Reviews of Chap. 2-5+-
The physics of fluids and plasmas
-An introduction for astrophysicists-

SOKENDAI, M1

Hideaki Takemura

The full set of hydrodynamic equation for neutral fluids

- The continuity equation (conservation of mass)

$$
\frac{\partial \rho}{\partial \mathrm{t}}+\nabla \cdot(\rho \mathbf{v})=0
$$

- Incompressible Navier-Stokes equation (conservation of momentum)

$$
\frac{\partial \mathbf{v}}{\partial \mathrm{t}}+(\mathbf{v} \cdot \nabla) \mathbf{v}=-\frac{1}{\rho} \nabla \mathrm{p}+\mathbf{F}+\nu \nabla^{\mathbf{2}} \mathbf{v}
$$

- Conservation of energy

$$
\rho\left(\frac{\partial \epsilon}{\partial \mathrm{t}}+\mathbf{v} \cdot \nabla \epsilon\right)-\nabla \cdot(\mathrm{K} \nabla \mathrm{~T})+\mathrm{p} \nabla \mathbf{v}=0
$$

The continuity equation (conservation of mass)

$$
\frac{\partial \rho}{\partial \mathrm{t}}+\nabla \cdot(\rho \mathbf{v})=0
$$

total mass

$$
\iiint_{\mathrm{V}} \rho \mathrm{dV}
$$

increase of mass per unit time

$$
\frac{\partial}{\partial \mathrm{t}} \iiint_{\mathrm{V}} \rho \mathrm{dV}=\iiint_{\mathrm{V}} \frac{\partial \rho}{\partial \mathrm{t}} \mathrm{dV}
$$

the mass flows out from the region V

$$
\iint_{\mathrm{S}} \rho \mathbf{v} \cdot \mathbf{n} \mathrm{dS}=\iiint_{\mathbf{V}} \nabla \cdot(\rho \mathbf{v}) \mathrm{dV}
$$

conservation of the mass

$$
\begin{aligned}
& \iiint_{V} \frac{\partial \rho}{\partial \mathrm{t}} \mathrm{dV}=-\iiint_{\mathrm{V}} \nabla \cdot(\rho \mathbf{v}) \mathrm{dV} \\
& \iiint_{\mathrm{V}}\left(\frac{\partial \rho}{\partial \mathrm{t}}+\nabla \cdot(\rho \mathbf{v})\right) \mathrm{dV}=0
\end{aligned}
$$

So that this makes ends meet for any arbitrary regions V

$$
\frac{\partial \rho}{\partial \mathrm{t}}+\nabla \cdot(\rho \mathbf{v})=0
$$

The full set of hydrodynamic equation for neutral fluids

- The continuity equation (conservation of mass)

$$
\frac{\partial \rho}{\partial \mathrm{t}}+\nabla \cdot(\rho \mathbf{v})=0
$$

- Incompressible Navier-Stokes equation (conservation of momentum)

$$
\frac{\partial \mathbf{v}}{\partial \mathrm{t}}+(\mathbf{v} \cdot \nabla) \mathbf{v}=-\frac{1}{\rho} \nabla \mathrm{p}+\mathbf{F}+\nu \nabla^{2} \mathbf{v}
$$

- Conservation of energy

$$
\rho\left(\frac{\partial \epsilon}{\partial \mathrm{t}}+\mathbf{v} \cdot \nabla \epsilon\right)-\nabla \cdot(\mathrm{K} \nabla \mathrm{~T})+\mathrm{p} \nabla \mathbf{v}=0
$$

Incompressible Navier-Stokes equation (conservation of momentum)

The full set of hydrodynamic equation for neutral fluids

- The continuity equation (conservation of mass)

$$
\frac{\partial \rho}{\partial \mathrm{t}}+\nabla \cdot(\rho \mathbf{v})=0
$$

- Incompressible Navier-Stokes equation (conservation of momentum)

$$
\frac{\partial \mathbf{v}}{\partial \mathrm{t}}+(\mathbf{v} \cdot \nabla) \mathbf{v}=-\frac{1}{\rho} \nabla \mathrm{p}+\mathbf{F}+\nu \nabla^{2} \mathbf{v}
$$

- Conservation of energy

$$
\rho\left(\frac{\partial \epsilon}{\partial \mathrm{t}}+\mathbf{v} \cdot \nabla \epsilon\right)-\nabla \cdot(\mathrm{K} \nabla \mathrm{~T})+\mathrm{p} \nabla \mathbf{v}=0
$$

conservation of energy

going in and out of energy
going in and out of energy
with fluids

The full set of hydrodynamic equation for neutral fluids

- The continuity equation (conservation of mass)

$$
\frac{\partial \rho}{\partial \mathrm{t}}+\nabla \cdot(\rho \mathbf{v})=0
$$

- Incompressible Navier-Stokes equation (conservation of momentum)

$$
\frac{\partial \mathbf{v}}{\partial \mathrm{t}}+(\mathbf{v} \cdot \nabla) \mathbf{v}=-\frac{1}{\rho} \nabla \mathrm{p}+\mathbf{F}+\nu \nabla^{2} \mathbf{v}
$$

- Conservation of energy

$$
\rho\left(\frac{\partial \epsilon}{\partial \mathrm{t}}+\mathbf{v} \cdot \nabla \epsilon\right)-\nabla \cdot(\mathrm{K} \nabla \mathrm{~T})+\mathrm{p} \nabla \mathbf{v}=0
$$

Assumptions

1. Spatial variation of viscosity μ is neglected.
2. Heat production due to the viscous damping of motion is neglected.
3. Neutral incompressible fluids $\nabla \cdot \mathbf{v}=0$

No radiation
No chemical evolution

- The continuity equation

$$
\frac{\partial \rho}{\partial \mathrm{t}}+\nabla \cdot(\rho \mathbf{v})=0
$$

- Incompressible Navier-Stokes equation $\frac{\partial \mathbf{v}}{\partial \mathrm{t}}+(\mathbf{v} \cdot \nabla) \mathbf{v}=-\frac{1}{\rho} \nabla \mathrm{p}+\mathbf{F}+\nu \nabla^{2} \mathbf{v}$
- Conservation of energy

$$
\rho\left(\frac{\partial \epsilon}{\partial \mathrm{t}}+\mathbf{v} \cdot \nabla \epsilon\right)-\nabla \cdot(\mathrm{K} \nabla \mathrm{~T})+\mathrm{p} \nabla \mathbf{v}=0
$$

We will consider the solutions of the equations under different circumstance.

Ideal fluids
 Chapter 4, no viscosity

Viscous flows
 Chapter 5

Euler equation

Incompressible Navier-Stokes equation $\frac{\partial \mathbf{v}}{\partial \mathrm{t}}+(\mathbf{v} \cdot \nabla) \mathbf{v}=-\frac{1}{\rho} \nabla \mathrm{p}+\mathbf{F}+\nu \nabla^{2} \mathbf{v}$

If $\nu=0(\mu=0), \quad \frac{\partial \mathbf{v}}{\partial \mathrm{t}}+(\mathbf{v} \cdot \nabla) \mathbf{v}=-\frac{1}{\rho} \nabla \mathrm{p}+\mathbf{F} \quad$ Euler equation no viscosity

\&

$$
\begin{aligned}
(\mathbf{v} \cdot \nabla) \mathbf{v} & =\frac{1}{2} \nabla(\mathbf{v} \cdot \mathbf{v})-\mathbf{v} \times(\nabla \times \mathbf{v}) \\
\longrightarrow & \frac{\partial \mathbf{v}}{\partial \mathrm{t}}+(\mathbf{v} \cdot \nabla) \mathbf{v}+\frac{1}{2} \nabla(\mathbf{v} \cdot \mathbf{v})-\mathbf{v} \times(\nabla \times \mathbf{v})=-\frac{1}{\rho} \nabla \mathrm{p}+\mathbf{F}
\end{aligned}
$$

- F is conservative force
take a curl
- vorticity $\omega=\nabla \times \mathbf{v}$
- incompressible fluids $\xrightarrow{\nabla \cdot \mathbf{v}=0} \rho=$ const .

$$
\frac{\partial \omega}{\partial \mathrm{t}}=\nabla \times(\mathbf{v} \times \omega)
$$

Newtonian fluid

Shear force is proportional to the gradient of velocity

$$
\begin{array}{r}
\pi_{i j}=\mathrm{a}\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)+\mathrm{b} \delta_{i j} \nabla \cdot \mathbf{v} \\
\&
\end{array}
$$

The equation of motion

$$
\rho \frac{d v_{i}}{d t}=\rho F_{i}-\frac{\partial P_{i j}}{\partial x_{j}}
$$

$$
\begin{aligned}
& \frac{\partial \mathbf{v}}{\partial \mathrm{t}}+(\mathbf{v} \cdot \nabla) \mathbf{v}=-\frac{1}{\rho} \nabla \mathrm{p}+\mathbf{F}+\nu \nabla^{2} \mathbf{v} \quad \text { Navier-Stokes equation } \\
& \xrightarrow[\text { take a curl }]{ } \frac{\partial \omega}{\partial \mathrm{t}}=\nabla \times(\mathbf{v} \times \omega)+\nu \nabla^{2} \omega
\end{aligned}
$$

Reynolds number

Fluid flows around geometrically similar object of different sizes let L, V are the typical length of the object and fluid velocity

$$
\mathbf{x}=\mathbf{x}^{\prime} L, \quad \mathbf{v}=\mathbf{v}^{\prime} V, \quad t=t^{\prime} \frac{L}{V}, \quad \omega=\omega^{\prime} \frac{V}{L}
$$

$\boldsymbol{x}^{\prime}, \boldsymbol{v}^{\prime}, t^{\prime}$ and ω^{\prime} are the values of length, velocity, time and vorticity measured in these scaled units

$$
\frac{\partial \omega}{\partial \mathrm{t}}=\nabla \times(\mathbf{v} \times \omega)+\nu \nabla^{2} \omega \quad \longrightarrow \quad \frac{\partial \omega^{\prime}}{\partial \mathrm{t}^{\prime}}=\nabla \times\left(\mathbf{v}^{\prime} \times \omega^{\prime}\right)+\frac{\mathbf{1}}{\mathscr{R}} \nabla^{\prime 2} \omega^{\prime}
$$

Reynolds number $\quad \mathscr{R}=\frac{L V}{\nu}$
Figure 5.3 Flow of a viscous fluid past a cylinder for various Reynolds numbers.
Reproduced from Batchelor (1967). Originally taken from Homann (1936).

