<u>Section 7.4 -7</u> Linear theory of waves & instability

Yuta Yamazaki NAOJ / Univ. Tokyo (M1)

Basic Seminar IIA

Irrotational Flow of barotropic ideal fluid with conservative force

• "Irrotational" ... $\Gamma \equiv \nabla \times \mathbf{v} = \mathbf{0}$

- v can be written as the gradient of a certain scalar potential
 - $\underline{\mathbf{v} = \nabla \Phi} \leftarrow \text{we can use } \phi \text{ instead of } \mathbf{v}$

Kelvin's vorticity theorem

for <u>barotropic</u> ideal fluid with <u>conservative</u> body <u>force</u>
 DΓ/Dt = 0

• Euler eq. (Navier-Stokes eq. for ideal(=inviscid) fluid) under conservative force

$$-\frac{\partial \phi}{\partial t} + \frac{1}{2}v^2 + \frac{p}{\rho} + \Phi = F(t) \qquad ... (7.29)$$
does not depend on position

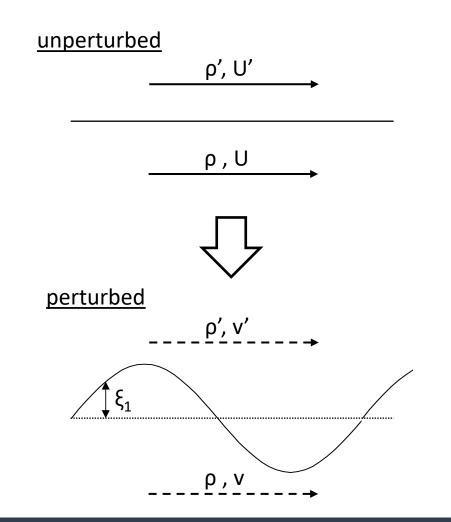
Assumptions

- Incompressible ($\Leftrightarrow \underline{\nabla \cdot v} = \mathbf{0} \Leftrightarrow$ continuity eq.)
 - each fluids have constant densities:
 ρ and ρ' (which do not vary with position.)

· Irrotational
$$(\Gamma \equiv \nabla \times \mathbf{v} = \mathbf{0})$$

· $\mathbf{v} = -\nabla \mathbf{\Phi}$

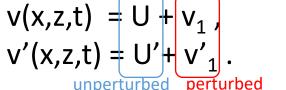
- Conservative force $(\underline{F} = \nabla \Phi)$
 - Note: Be sure to distinguish between φ and Φ !!!



\cdot formulation

• general config.

velocity in lower/upper fluid:

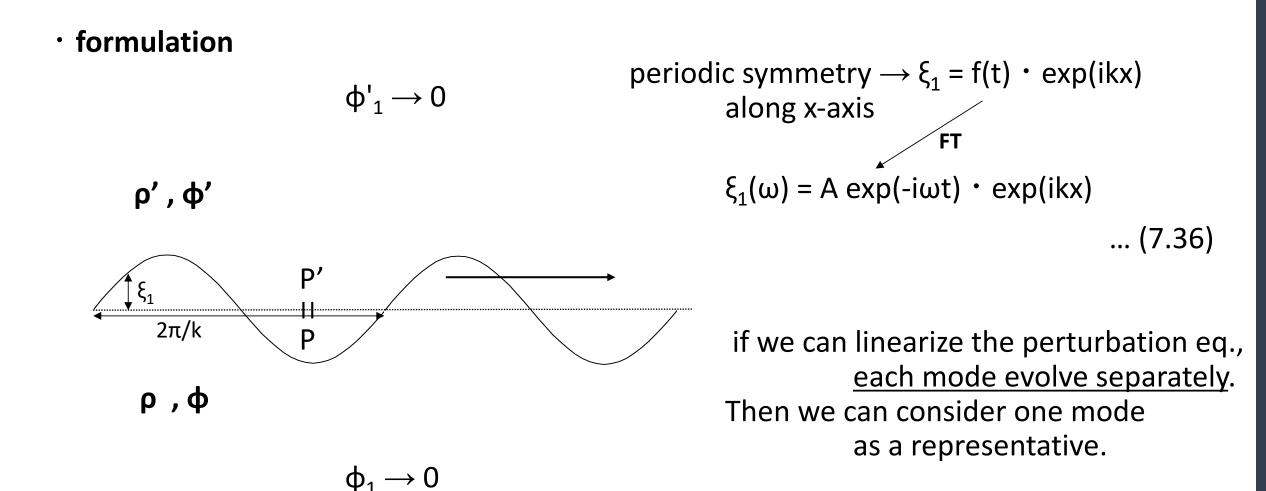


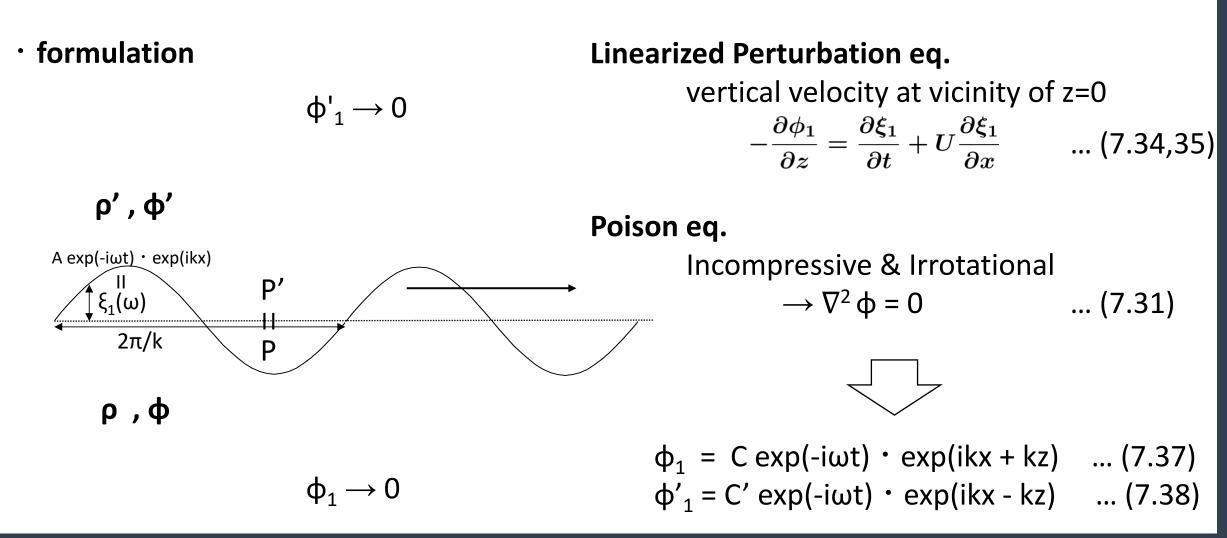
- boundary conditions
 - the perturbations will vanish
 @ far away from the interface
 - 2. Pressure has to be continuous across the interface

velocity potentials: $\phi = -U + x + \phi_1$ $\phi' = -U' + \phi'_1$.

$$\phi_1, \phi_1' \rightarrow 0 \ (@z \rightarrow \infty / -\infty)$$

$$P(z=0) = P'(z=0)$$





Boundary condition at the interface

from (7.29):
$$-\frac{\partial\phi}{\partial t} + \frac{1}{2}v^2 + \frac{p}{\rho} + \Phi = F(t)$$

we can calculate pressure **P** & **P'** at z=0

and obtain (7.45):
$$\rho\left(-\frac{\partial\phi_1}{\partial t} - U\frac{\partial\phi_1}{\partial x} + g\xi_1\right) = \rho'\left(-\frac{\partial\phi'_1}{\partial t} - U'\frac{\partial\phi'_1}{\partial x} + g\xi_1\right) \text{ at vicinity of } z=0$$
(7.45)

substituting ξ_1 , ϕ_1 , ϕ'_1 into

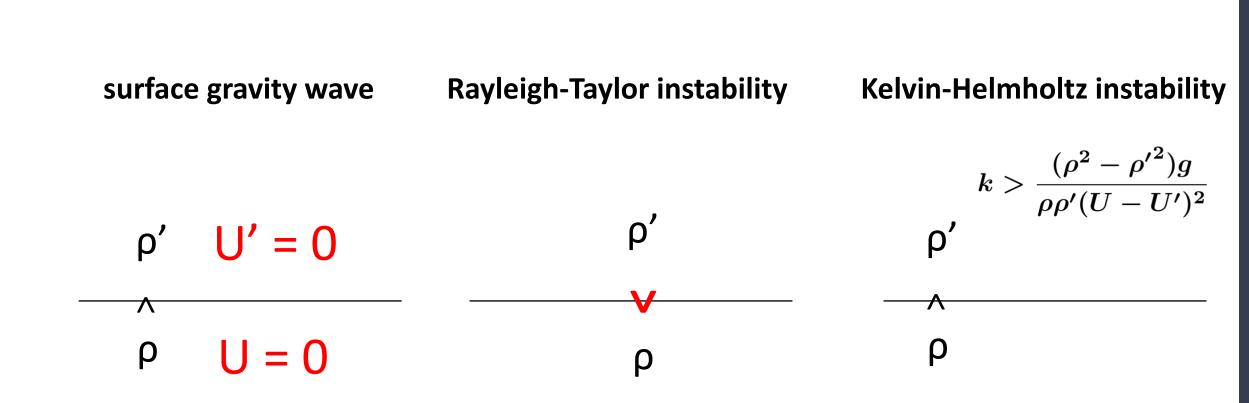
 ξ - ϕ relation eq. (= 7.34, 35) and this boundary condition (7.45), finally we get following **dispersion relation**.

$$\frac{\omega}{k} = \frac{\rho U + \rho' U'}{\rho + \rho'} \pm \left(\frac{g}{k} \frac{\rho - \rho'}{\rho + \rho'} - \frac{\rho \rho' (U - U')^2}{(\rho + \rho')^2}\right)^{1/2} \dots (7.48)$$

- Summary of Linear Analysis for perturbationa at a two-fluid interface
 - perturbed interface
 - ... $\xi_1 = A \exp(-i\omega t) \cdot \exp(ikx)$
 - dispersion relation

$$\frac{1}{k} = \frac{\rho U + \rho' U'}{\rho + \rho'} \pm \left(\frac{g}{k} \frac{\rho - \rho'}{\rho + \rho'} - \frac{\rho \rho' (U - U')^2}{(\rho + \rho')^2} \right)^{1/2}$$

D>0 \rightarrow perturbations will not grow ex.) $\rho > \rho'$, U=U'=0 ... surface gravity wave D<0 \rightarrow perturbations will grow ex1.) $\rho < \rho'$... Rayleigh-Taylor instability ex2.) $\rho > \rho'$... Kelvin-Helmholtz instability



7.5 Jeans Instability

perturbation $\rho: \rho_0 \rightarrow \rho_0 + \rho_1$

- · Let us analyze instability of a uniform gas bound by self-gravity
 - Poisson eq. for gravity ... (7.54, 57)
 continuity eq. ... (7.55) (using to eliminate P)
 Euler eq. + hydrostatic eq. ... (7.56)

let all variables have following x and t dependences:

exp[i (kx-ωt)]

then we obtain dispersion relation ... (7.58, 59)

$$\omega^2 = c_s^2 (k^2 - k_J^2) , \qquad k_j^2 = \frac{4\pi G \rho_0}{c_s^2}$$

Jeans Mass $M_J = 4/3 \pi \lambda_J^3 \rho_0$

perturbations will grow if the size of them is lager than $\lambda_j \equiv 2\pi/k_j$!

7.6 Stellar Oscillations. Helioseismology

Let us analyze radial pulsation of stars

from Euler eq., we obtain the acceleration of a fluid element ... (7.61) dv = 1 dn = GM

 $\frac{dv}{dt} = -\frac{1}{\rho}\frac{dp}{dr} - \frac{GM}{r^2}$

assuming uniform expansion and considering only linear term, dp/dr = -3 ρ_0/r_0 , dp/dr = γ (dp/dr) p_0/ρ_0 = -3 γ p_0/r_0

substituting these to (7.61) and eliminate p by using hydrostatic eq., we obtain (7.64)

$$rac{dv}{dt} = -rac{GM}{{r_0}^2} 3\delta \left(\gamma - rac{4}{3}
ight)$$

in the case of δ >0, when γ >4/3 acceleration become negative, so that stars are stable.