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Water in a bucket 9.1 Introduction

Water

Differential rotation Solid-body rotation

• We take water in a bucket 
and start rotating the bucket 
around its axis.

• Only the water near the walls 
of the bucket starts rotating 
with the bucket.


• The water in the central part 
still remains at rest.


• Angular velocity varies 
within the water.

• Viscosity eventually stops the 
relative motions amongst 
different layers of water.


• The whole water spins with  
the same angular velocity 
as that of bucket.

Axis



Navier-Stoks equation in cylindrical coordinates
9.1 Introduction

• In the astrophysical Universe, many objects rotating not like a solid body with two reasons.

1. Viscous forces may not have enough time to establish a solid-body rotation.

2. There may be some physical mechanism which maintains the differential rotation.


• Consider how centrifugal force in a rotation body of fluid is balanced to understand more.
Navier-Stoks equation in cylindrical coordinates
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Accretion disks or the disk of a spiral galaxy

A steady, axisymmetric rotation such that we can put
∂
∂t

= 0,
∂
∂θ

= 0, vr = 0

Navier-Stoks equation in cylindrical coordinates
∂vr

∂t
+ vr

∂vr

∂r
+

vθ

r
∂vr

∂θ
+ vz

∂vr

∂z
−

v2
θ

r
= −

1
ρ

∂p
∂r

+ ν( ∂2vr

∂r2
+

1
r2

∂2vr

∂θ2
+

∂2vr

∂z2
+

1
r

∂vr

∂r
−

2
r2

∂vθ

∂θ
−

vr

r2 ) + Fr

−
v2

θ

r
= gr −

1
ρ

∂p
∂r

(9.1) is the   component of the gravitational field. ∵ gr r

① In some astrophysical system such as accretion disk or disk of a spiral galaxy, 
the pressure gradient force is not important.


② The centrifugal force is balanced by gravity so the angular velocity is given by


③ The effect of viscosity is to induce a slow radial inflow of matter rather than to 
produce solid-body rotation.

vθ /r = |gr | /r .

9.1 Introduction



The effect of viscosity in a thin accretion disk

See also 5.7.1 The basic disk dynamics

The dynamics of a thin accretion disk using cylindrical coordinates (vz = 0, ∂/∂θ = 0)
Continuity equation

Navier-Stokes equation
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where we neglect the variation of     and     with vr vθ z
(although    varies with    , we do not expect the 
components of velocity to vary much).
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: the angular momentum associated with an 
annular ring from between   and          .r r + dr

∵ Ω = vθ /r

Σr2Ω ⋅ 2πr dr
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: the divergence of the angular momentum flux 
Σr2Ωvrer due to the radial flow.

(5.45) : the evolution of the angular momentum 
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Inside a slowly rotating star
① The gravitational field and the pressure gradient nearly balance each other.

② There remains an unbalanced part of pressure gradient and it counteracts the centrifugal 

force.

③ The stars seem to rotate like solid bodies due to the effect of viscosity because there is 

no obvious mechanism to sustain differential rotation in such stars.
Viscosity

Convection

① The effect of molecular viscosity inside the star is negligible.

② Viscosity appears in the Navier-Stokes equation in the term of          , which is not 

significant in systems with large scale.
ν∇2v

Navier-Stokes equation :
∂v
∂t

+ (v ⋅ ∇)v = F −
1
ρ

∇p + ν∇2v (5.10)

① Convection inside the star occurs the turbulent diffusion of various quantities like the 
angular momentum (cf. 8.4 Turbulent diffusion).


② It is sometimes appropriate to introduce an anisotropic viscosity to model the turbulent 
diffusion (Kippenhahn 1963).


③ The steady state with anisotropic viscosity is a state of differential rotation.

④ If the viscosity is made more isotropic, the star rotates more like a solid-body.

In the sun, the angular velocity between the pole and the equator differs by more than 10%.

9.1 Introduction



Rayleigh’s criterion
All types of differential rotation are not stable.

The rings tend to return to 
their initial position.

Unstable

Stable

The rings move further 
away.

The ring is interchanged 
with a fluid ring at a 
greater distance r1 (i.e. r1 > 
r0) moving the velocity v1.

r1

v1

A fluid ring at a distance r0 
from the axis moving the 
velocity v0.

Axis
r0

v0

Assume the conservation of angular momentum.
calculation : next page

9.1 Introduction



Rayleigh’s criterion
• The displaced ring acquires a velocity  r0

r1
v0 .

• The ring previously at r1 had a centripetal 

acceleration v2
1

r1
.

It has been provided by the various forces 
there such as the part of the pressure 
gradient left after balancing gravity.

• The displaced ring requires a centripetal 

acceleration                          to remain in its 

new position. 

1
r1 ( r0
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2

=
r2
0v2
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r3
1

• If                , the forces present there will 

push  the ring inward towards its initial 

position.
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0v2
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0Ω0)2 < (r2
1Ω1)2 ∵ Ω0 = v0r0, Ω1 = v1r1

∴
d
dr

[(r2
0Ω0)2] > 0 (9.2) : Rayleigh’s criterion

The rings tend to return to 
their initial position.

Stable

9.1 Introduction



Acceleration in the rotating frame
9.2 Hydrodynamics in a rotating frame of reference

O

θ
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Inertial frame

Rotating reference frame

r = (x, y, z)
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+ 2Ω × v′� + Ω × (Ω × r′�) (9.3)



Navier-Stokes equation in the rotating frame
9.2 Hydrodynamics in a rotating frame of reference

• Making the replacement is the Navier-Stokes equation, we obtain the equation of motion 
in the rotating frame

∂v
∂t

+ (v ⋅ ∇)v = F −
1
ρ

∇p + ν∇2v (5.10)

∂v
∂t

+ (v ⋅ ∇)v = F −
1
ρ

∇p + ν∇2v − 2Ω × v − Ω × (Ω × r) (9.4)

Coriolis force

Centrifugal force, which can also be written as 1
2

∇( |Ω × r |2 )

• If the body force F is of gravitational origin, we can write it as         , where     is the 
gravitational potential. 

−∇Φ Φ

∂v
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+ (v ⋅ ∇)v = −
1
ρ

∇p − ∇(Φ −
1
2

( |Ω × r |2 )) + ν∇2v − 2Ω × v (9.5)

The basic equation of motion for fluids in a rotating frame of reference

① The effect of the centrifugal force is to introduce a potential force that modifies gravity.

② An effective gravitational potential is introduce as follows.

Φeff = Φ −
1
2

( |Ω × r |2 ) (9.6)



Coriolis force
9.2 Hydrodynamics in a rotating frame of reference

fluid flows through pipes in the laboratory large ocean currents and monsoon winds   

We do not have to concern that the Earth 
is a rotating frame.

They are influenced by the Earth rotation 
very much.

To figure out how important the Coriolis force is, let’s compare             with               in (9.5). 2Ω × v (v ⋅ ∇)v

※Coriolis  force is non-zero only when there are motions with respect to the rotating frame.

If V and L are the typical velocity and length scales,

(v ⋅ ∇)v is order of 

Coriolis force −2Ω × v is order of 

V2/L

ΩV

The ratio of the two is ϵ =
V2/L
ΩV

=
V

ΩL
(9.7)

Rossby number

The Coriolis force is important if the Rossby munger is of order unity or less.

This is the case for large-scale motions in the atmosphere or the oceans, but not for most 
fluid phenomena in the laboratory.



Large-scale atmospheric or oceanic circulations
9.2.1 The geostrophic approximation

① The atmosphere or the ocean is much thinner than the dimensions of the Earth.

• The fluid flows are nearly horizontal.


② The flows are changing slowly and have low Rossby numbers.

• The terms on the L.H.S. of (9.5) are very small compare to the terms on the R.H.S.


③ The magnitude of Coriolis force is small compare to the gravity.

• The Coriolis force does not play an important role in the force balance in the vertical direction.


④ Gravity is absent in the horizontal direction.

• Coriolis force gets the chance to play a dominant role in the horizontal force balance.

−
∇p
ρ

− ger − 2Ω × v = 0 (9.8)

1
ρ

∂p
∂r

= − g (9.9)

∵ − ∇Φ = − ger

∇h p = − 2ρ(Ω × v)h (9.10)

 : vertical direction

 : horizontal direction

Geostrophic approximation (地衡流近似)
(h implies the horizontal components) 

Depression of pressure 

We expect the velocity of flows 
v in the direction of −∇p .

pressure

low

high

In geophysical circulations



Equation of motion with vorticity
9.2.2 Vorticity in a rotating frame

We will consider ideal, incompressible fluids. 

(9.5)

ν = 0, ∇ ⋅ v = 0 (ρ = constant)

& (v ⋅ ∇)v =
1
2

∇(v ⋅ v) − v × (∇ × v) (4.16) & ω = ∇ × v (4.18)

∂v
∂t

+ v × ω = − ∇( p
ρ

+
1
2

v2 + Φ −
1
2

|Ω × r |2 ) − 2Ω × v (9.11)

taking the curl 
∂ω
∂t

= ∇ × (v × ω) + ∇ × (v × 2Ω)

Since     is constant in time,Ω
∂
∂t

(ω + 2Ω) = ∇ × [v × (ω + 2Ω)] (9.12)

∂Q
∂t

= ∇ × (v × Q) (4.42)
d
dt ∫S

Q ⋅ dS = 0 (4.43)

Kelvin’s vorticity theorem

∵ Q is any vector field

d
dt ∫S

(ω + 2Ω) ⋅ dS = 0 (9.13)

The generalization of Kelvin’s vorticity theorem in rotting frames(Bjerknes’s theorem)



Generations of vortices in rotating frames
9.2.2 Vorticity in a rotating frame

• The flux                associated with the fluid becomes larger.


• Vorticity     is developed opposite to     so that the integral                          remains conserved 

even though there was no vorticity initially.

A volume fluid which is at rest in a rotating frame(Figure 9.1(a)).

The fluid is squeezed to spread into a thinner layer(Figure 9.1(b)).

∫S
Ω ⋅ dS

ω Ω ∫S
(ω + 2Ω) ⋅ dS

This gives an idea how cyclonic storms may be produced in the Earth’s atmosphere.



Taylor-Proudman theorem
9.2.3 Taylor-Proudman theorem

We will consider ideal, incompressible fluids. ν = 0, ∇ ⋅ v = 0 (ρ = constant)

For steady fluid in a rotating frame of reference,

(Ω ⋅ ∇)v = 0 (9.15)

( ∵
∂
∂t

(ω + 2Ω) = 0 in (9.12))
If the flows are slow such that any vorticity associated with the flow is small compare to     , Ω

∇ × [v × (ω + 2Ω)] = 0

∇ × (v × 2Ω) = 0 (9.14)
( ∵ ∇ × (v × 2Ω) = (Ω ⋅ ∇)v − (v ⋅ ∇)Ω + v(∇ ⋅ Ω) − Ω(∇ ⋅ v))

• v does not change in the direction of     .

•  Slow steady flows in rotating frames tend to be invariant parallel to the rotation axis,

Ω

Ω

the solid object

v



Self-gravitating rotating fluid mass
9.3 Self-gravitating rotating masses

constant density    ρ

If there is no rotation in the system, 
the equilibrium configuration of the 
system is spherical.

The rotation cause some flattening 
near the pole.

• In a frame with angular velocity     in which the fluid is everywhere at rest (solid-body rotation).


• On the outer surface of the fluid mass, the pressure can be taken to be zero.

• Choosing the z axis along the axis of rotation, we have from           that

Put in some angular momentum

Ω

from (9.11), ∇( p
ρ

+ Φ −
1
2

|Ω × r |2 ) = 0 ∴
p
ρ

+ Φ −
1
2

|Ω × r |2 = constant (9.16)

Ω

(9.16)

Φ −
1
2

Ω2(x2 + y2) = constant (9.17)

We want to establish that the fluid takes up the shape of an ellipsoid.

We have to obtain the gravitational potential     due to an ellipsoid.Φ



Gravitational potential due to the ellipsoid
9.3 Self-gravitating rotating masses

Only the results

An ellipsoid with uniform density    inside the boundary surfaceρ
x2

a2
+

y2

b2
+

z2

c2
= 1 (9.18)

The gravitational potential at any point inside this ellipsoid is given by
Φ = πGρ(α0x2 + β0y2 + γ0z2 − χ0) (9.19)

where

α0 = abc∫
∞

0

dλ
(a2 + λ)Δ

, β0 = abc∫
∞

0

dλ
(b2 + λ)Δ

, γ0 = abc∫
∞

0

dλ
(c2 + λ)Δ

(9.20)

and

χ0 = abc∫
∞

0

dλ
Δ

(9.21)

being given by Δ

Δ = [(a2 + λ)(b2 + λ)(c2 + λ)]1/2 (9.22)

If the rotating mass of fluid takes up the shape of an ellipsoid, (9.19) at the bounding surface has to 
satisfy (9.17).

(α0 −
Ω2

2πGρ ) x2 + (β0 −
Ω2

2πGρ ) y2 + γ0z2 = constant (9.23)

In order fo (9.18) and (9.23) to hold simultaneously,

(α0 −
Ω2

2πGρ ) a2 = (β0 −
Ω2

2πGρ ) b2 = γ0c2 (9.24)

See also Chandrasekhar (1969 Chapter 3)

 The shape of the fluid : (a, b, c)



Maclaurin spheroids and Jacobi ellipsoids
9.3 Self-gravitating rotating masses

Two solutions of (9.24);

① Maclaurin spheroids(9.3.1)


• The rotating fluid takes up a symmetric and flattened configuration around the 
rotation axis.


② Jacobi ellipsoids(9.3.2)

• The rotating fluids have three unequal axes under certain circumstance.

Put in some angular momentum ？
(α0 −

Ω2

2πGρ ) a2 = (β0 −
Ω2

2πGρ ) b2 = γ0c2 (9.24)

Sphere



Maclaurin spheroids
9.3.1 Maclaurin spheroids

The rotating fluid takes up a symmetric and flattened configuration around the rotation axis.

∵
x2

a2
+

y2

b2
+

z2

c2
= 1 (9.18)a = b > c (9.25)

The eccentricity e

• e = 0 : circle

• 0 < e < 1 : ellipse

• e = 1 : parabola

• 1 < e : hyperbola

An ellipsoid with such axes is called a spheroid and the eccentricity 
（離心率）is defined by

e2 = 1 −
c2

a2
(9.26)

 (9.20)
α0 = β0 =

(1 − e2)1/2

e3
sin−1e −

1 − e2

e2
(9.27)

γ0 =
2
e2 [1 − (1 − e2)1/2 sin−1e

e2 ] (9.28)

The relation between Ω and e is given by  (9.24)
Ω2

πGρ
=

2(1 − e2)1/2

e3
(3 − 2e2)sin−1e −

6
e2

(1 − e2) (9.29)

0.449

0.930

reaches a maximum 

A spherical configuration (e=0) 
corresponding to no rotation (Ω=0).

A spheroid becomes more 
flattened with more rotation.

Ω2/πGρ

Less rotation makes the 
system more flattened.



Maclaurin spheroids
9.3.1 Maclaurin spheroids

The angular momentum of the spheroid is
L =

2
5

Ma2Ω (9.30) ∵ the moment of inertia of the spheroid I =
2
5

Ma

∵ M =
4
3

πa2cρ =
4
3

πa3(1 − e2)1/2ρ (9.31)

The dimension less angular momentum is

L =
L

[GM3(a2c)1/3]1/2
=

2 3
5 (a

c

2/3) ( Ω2

πGρ )
1/2

(9.32) : constant for a given mass of rotating fluids

The relation between Ω and e The relation between     and eL

The additional angular momentum makes 
the system so flattened and increases the 
momentum of inertia at a such fast rate.

The angular velocity goes down



Jacobi ellipsoids
9.3.2 Jacobi ellipsoids

Ellipsoidal solutions with three unequal axes under certain circumstance.
 (9.24) (α0 − β0)a2b2 + γ0c2(a2 − b2) = 0 (9.33)

α0 = abc∫
∞

0

dλ
(a2 + λ)Δ

, β0 = abc∫
∞

0

dλ
(b2 + λ)Δ

, γ0 = abc∫
∞

0

dλ
(c2 + λ)Δ

(9.20)

(a2 − b2)∫
∞

0 [ a2b2

(a2 + λ)(b2 + λ)
−

c2

c2 + λ ] dλ
Δ

= 0 (9.34)

(9.34) is the result of calculation so to demonstrate the existence of Jacobi ellipsoids, 
we need to find real and unequal values of (a, b, c).

x2

a2
+

y2

b2
+

z2

c2
= 1 (9.18)

We will only see the results.



Maclaurin spheroids or Jacobi ellipsoids

https://www.dailymotion.com/video/x2rv2h1video(Jacobi’s ellipsoidal Earth) : 

Two solutions of (9.24);

① Maclaurin spheroids[9.3.1]


• The rotating fluid takes up a symmetric and flattened configuration around the 
rotation axis.


② Jacobi ellipsoids[9.3.2]

• The rotating fluids have three unequal axes under certain circumstance.

9.3.2 Jacobi ellipsoids

I. If the dimensionless angular momentum     is less than 0.304(corresponding to e < 0.813)L

Maclaurin spheroids are the only possible solution.

There are two solution: a Maclaurin spheroid and a Jacobi ellipsoid.
II. If the dimensionless angular momentum     is larger than 0.304L

• For given angular momentum, the Jacobi ellipsoid has less rotational kinetic 
energy compare to the Maclaurin spheroid.


• If there is some dissipation mechanism like viscosity, the Maclaurin spheroid 
becomes unstable.


• It will relax to a Jacobi ellipsoid after some dissipation of energy.

We considered the solid-body rotation of a mass of incompressible fluid.



9.4 Rotation in the world of stars

We assume that a compressible star can be completely at rest in the rotating frame of reference.

∇p
ρ

= − ∇Φeff (9.33)

∂v
∂t

+ (v ⋅ ∇)v = −
1
ρ

∇p − ∇(Φ −
1
2

( |Ω × r |2 )) + ν∇2v − 2Ω × v (9.5)

∇ ×
∇p × ∇( 1

ρ ) = 0?∇p × ∇ρ = 0 ?

1. The contours of constant p and constant    are coincide.

2. From (9.33), the contours should be the contour of constant       .

3. From the perfect gas law, the contours also should be the contour of constant T.

ρ
Φeff

Because of the spheroidal shapes of these contours, the temperature gradient near the pole of a 
particular contour is larger than that near the equator.

The image of the shapes of contours

The radiative energy flux coming through the poles of a 
star is larger than that coming through the equator.

Rotation in the world of stars



Rotation in the world of stars
9.4 Rotation in the world of stars

• Stellar models neglecting rotation give reasonably good results. 
• In the case of the Sun and the main-sequence stars, the rotation is not too strong.

• The centrifugal force is a small fraction of gravity.


• Rotation becomes important in collapsed stars.
When we decrease the radius a of a star, if the angular momentum is conserved,


• The moment of inertia decrease as a2.

• The angular velocity Ω goes as a-2.

• The centrifugal force Ω2a goes as a-3.

• The gravity increase as a-2.

The centrifugal force increase faster 
with decreasing radius than gravity.

A maximum limit of the rotation rate for a mass of incompressible fluid is(see section 9.3.1)
Ω2 < 0.449πGρ (9.36)

The fluid mass would fall apart if it is made to rotate faster(The corresponding condition for the 
period is T=2π/Ω).

T >
2.05 × 104

ρ
(9.37)

The rotation is also important during the star’s birth. We need some mechanisms for removing the 
angular momentum from the dense cores in order to form stars.



Rotation in the world of galaxies
9.5 Rotation in the world of galaxies

We should apply the equations of stellar dynamics rather than the equations of  hydrodynamics to 
study galactic rotation. It is(see Exercise 3.3)

∂
∂r

(n⟨Π2⟩) +
∂
∂z

(n⟨ΠZ⟩) +
n
r

[⟨Π2⟩ − ⟨Θ2⟩] = ngr (9.38)

where          and Z are the        and z components of the velocities of stars, which have the number 
density n.

Π, Θ r, θ

Let’s consider the situation in which all stars move in regular circular orbits without any random 
motion.

∵ Π = Z = 0 Θ = Θc = r |gr | (9.39)
(the gravity is completely balanced by the centrifugal force.)

If the stars have random velocities, then the gravity can be partially or fully balanced by the 
‘pressure’ forces arising out of these random motions.

⟨Θ⟩ < Θc

(only a part of the gravitational force remains to balanced by the centrifugal force.)



9.5 Rotation in the world of galaxies
Rotation in the world of galaxies
By analyzing the random motions of stars in the solar neighborhood, theses stars can be 
divided into two categories;


1. Stars with low Radom velocities which move in nearly circular orbit

2. Stars with high random velocities


For the stars in category 2, they have a much less average rotation around the galactic 
center compare to the stars in category 1.

Their random motion balance the gravity and they need not have as much 
rotation as the stars in category 1.

※ Even within category 1, some groups of stars have more velocity dispersion compare to 
the others. They seem to lag behind the other stars while going around the galactic center. 
The elliptical galaxies have much less rotation compare to the spiral galaxies and the gravity 
is balanced mainly by the velocity dispersion.
The rotation patterns of spiral galaxy
In these galaxies, most of the visible stars in the disk move in nearly circular orbits with    given by (9.39).Θ

If the gravity drops as r-2 in the outer regions of the galaxy,    should fall off as r-1/2Θ

∵ Θ = Θc r ⋅ r−2 = r−1/2 Such a fall in rotation velocity has not bee observed.

These galaxies have large amount of unseen dark matter in regions beyond the 
visible disk so that the gravitational field does not fall off as rapidly as we expect.


