プランク偏光データに見る分子雲周辺の

磁場及び塵粒子の特性：L1689フィラメント B－field and dust grains around molecular clouds revealed by Planck polarization data：the L1689 filament松村雅文 \＆BISTRO－Jチーム
Masafumi Matsumura \＆BISTRO－J team

Introduction (1)

- BISTRO: B-fields In Star-forming Region Observations
- Use Polarimeter POL-2 in submm region, with SCUBA-2 on JCMT,
- To trace the magnetic field in star-forming regions in the Gould Belt.
- PIs: Derek Ward-Thompson (UK); Pierre Bastien (Canada); Ray Furuya (Japan); Woojin Kwon (Korea); Di Li (China); Shih-Ping Lai (Taiwan).
- Co-Is: many from Canada, China, EAO, Japan, Korea, Taiwan, \& UK
- Regions to study in BISTRO:

Auriga, IC5146, Ophiuchus (3 fields), L1689B, Orion A, Orion B, Perseus B1, NGC1333 (2 fields), Serpens (2 fields), Taurus B211/213 (2 fields) , \& L1495

- Now it is on progress...
\rightarrow Furuya-san \& Kwon-san's talks for details.

Introduction (2)

- Observation by BISTRO
- Sensitive and high-spatial resolution, but not very wide areas.
- This study
- investigates the B-field and grains, around the mapping regions by BISTRO,
- expects to obtain better understanding of the BISTRO data,
- with using available data:
- Planck v.202: flux and polarization data
- Low resolution: FWHM=4.9' @HFI 353GHz (Planck Collaboration, 2016, A\&A 594, A8)
- But sensitive ($3 \times 10^{-5} \mathrm{~K}_{\mathrm{CMB}}=2.5 \mathrm{kJy} / \mathrm{sr}$), homogeneous all sky map
- optical polarization data. etc.
- This talk considers a filament in L1689 of Oph region.
- This filament contains L1689, L1712, and L1729.

Extinction Map

Ridge + 2006 AJ 131, 2921

Data used in this study:

- Planck data: version 2.02 (released in 2015)
- 353GHz all sky map: HFI_SkyMap_353_2048_R2.02_full.fits
- CO $3 \rightarrow 2$ line subtraction:
- Planck Collaboration, 2014, AA571, A13
- "Type 3" method "Multi-line approach"
- data: COM_CompMap_CO21-commander_2048_R2.00.fits
- CMB subtraction:
- data: COM_CMB_IQU-commander-field-Int_2048_R2.01_full.fits
- Optical polarimetry:
- Vrba et al. 1976, AJ 81, 958 (also Vrba et al. 1993, AJ 105, 1010)
- Dust model: "2 component model" ... it uses 2 black (grey) bodies.
- Meisner \& Finkbeiner 2015, ApJ 798, 88

τ_{545} of 2 comp model

```
    C
```


Meisner \& Finkbeiner 2015

$$
A_{v}=8 \times 10^{3} \tau_{545}
$$

Regions of L1688 observed by BISTRO are also indicated.

Temperature T_{2} by 2 comp-model

Same as the previous slide, but the scale is different.

Polarization

- The directions are the B-field.
- Red: Planck 353GHz submm polarized flux
- binning: $8.5^{\prime} \times 8.5^{\prime}$
- Yellow: Optical polarization by Vrba + 1976

Polarization

 around L1689 (enlarged)- Red: Planck 353GHz submm polarized flux
- no binning $1.7^{\prime} \times 1.7^{\prime}$
- Yellow: Optical polarization by Vrba + 1976

Investigated region of L1689 filament:

From $\left(\alpha_{0}, \delta_{0}\right)=$ (353.43,16.05)

In the direction of P.A. $=72 \mathrm{deg}$.

Width: $\pm 0.6 \mathrm{deg}$.
Length: ~ 8 deg.

- L1689 filament: $\left(\alpha_{0}, \delta_{0}\right)=(353.43,16.05)$ P.A. of cutting: 162d. 162 deg. $\neq 140$ deg.

Binning: $8.5^{\prime} \times 8.5^{\prime}$

Flux vs. fractional pol in L1689 filament

Offset < 2.5 deg.

Offset > 2.5 deg.

Flux vs. Polarized Flux in L1689 filament

Offset < 2.5 deg.

Offset > 2.5 deg.

Investigated region of L1688 filament:

From $\left(\alpha_{0}, \delta_{0}\right)=$
(351.61,17.48)

In the direction of

$$
\text { P.A. }=52 \mathrm{deg} .
$$

Width: $\pm 0.6 \mathrm{deg}$.
Length: ~ 9 deg.

- L1688 filament: $\left(\alpha_{0}, \delta_{0}\right)=(351.61,17.48)$ P.A. of cutting: 142 deg. It coincides with P.A.

Summary

- L1689-L1712-L1729 filament: warped magnetic field?
- We found that P.A. varies 120 deg. in the NS direction.
- This variation continues along 2.5° (or 5.7 pc in projected linear distance) along the EW direction.
- P.A. is almost constant ~ 140 deg. in the eastern region.
- But P.A. is NOT exactly the same as the filament direction ~ 160 deg.
- What is it? Can stellar wind from σ Sco and/or other stars explain it?
- Clumps are present in the L1689 filament.
- In the pol-vector map, those clumps seem not to be affected by the B-field.
- The B-field may be too complicated to resolve, so the appearance of polvectors does not change?

Thank you! Merci!

