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Massive Outflows 
Driven by Magnetic Effects 
in Star Forming Clouds 
with High Mass Accretion Rates	
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Motivation	

http://www.nao.ac.jp/gallery/weekly/2014/20141216-w3-main.html	

v  Massive stars ( > 8Msun ) 
formation process is no clearly 
understand	

v  Massive stars significantly affect 
the evolution of the universe 

•  stellar radiation feedback 
•  inject kinetic energy, thermal 

energy 
•  polluted gas into interstellar 

space / stellar wind / 
supernova explosion	

Clarifying Massive stars formation process is 
important in astrophysical study !!!	
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Previous Works	
v Krumholz / Kuiper 

 → stellar radiation feedback 
 → magnetic outflow 

→ stellar radiation feedback 
→　magnetic outfow	

v Hennebelle, Commercon  
v Seifried	

Study of  

Massive star Formation / Massive Outflow 

Mainly Only 4 Group !!	
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Beuther et al. (2002)	 Wu, Y. et al. 
(2004)	

Wu, Y. et al. 
(2004)	

Maud et al. (2014)	
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Introduction　	

Massive outflows are 
scaled-up versions 
of low-mass outflow ?	
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Introduction　	
What’s the Magnetic Outflow ?	

→ transfer angular momentum 
by magnetic and rotation effects	

Li et al. (2015)	

Strong magnetic field 
observed in massive 
star forming regions 
(Li et al. 2015 / Falgarane et 
al. 2008)	
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Introduction　	

Angular momentum problem	

specific angular momentum 
should decrease a factor of 10-5	 Goodman et al. (1993), Williams &Cieza (2011), 

Mathieu (2004)	

Low-mass Stars 
: Jet, Outflow can transfer 
angular momentum ~99.9% 
(Tomisaka 2000) 

→ How are massive stars ?	

■
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Methods	

central density：3.8×10-19gcm-3 
isothermal temperature：40K  (Machida & Hosokawa. 2013) 

Bonnor-Ebert density profile	

 Protostar is formed 
→ remove the gas n > nthr 
in r < rsink 
sink radius : 1AU 

Resistive-MHD eq	

p = p(⇢)barotropic eq :	
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Methods	

prepared 6 model 
controls the cloud mass, initial cloud stability 

ratio of thermal to gravitational energy	

•  mass accretion rate is large in an initially thermally 
unstable cloud 

•  magnetic field strength：B0 is adjusted to µ = 2 
→each model has different magnetic field strengths	
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Results : Mass accretion rate against protostellar mass	
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initially more 
unstable cloud 
→ higher 
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depend on 
first core	

oscillation is caused 
by GI of Disk	

averaged mass accretion rate 
in each model corresponds to 
the theoretical prediction	
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Results : Outflow of each model 	
6 7 8 9 10 11 12 13

log n [cm-3]
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t = 13902.7 [yr] tps = 27.8 [yr] Mps = 0.1 [Msun]

-400 -200 0 200 400
x [AU]

-400

-200

0

200

400

z 
[A

U
]

  
 

 

  
 

 

  
 

 

 
 
 

t = 240039.6 [yr] tps = 5.7 [yr] Mps = 0.01 [Msun]
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t = 43814.5 [yr] tps = 3.0 [yr] Mps = 0.01 [Msun]
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t = 14019.1 [yr] tps = 144.2 [yr] Mps = 1.0 [Msun]
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t = 43940.7 [yr] tps = 129.1 [yr] Mps = 0.1 [Msun]
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t = 240228.8 [yr] tps = 194.9 [yr] Mps = 0.1 [Msun]  
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t = 241122.8 [yr] tps = 1088.9 [yr] Mps = 1.1 [Msun]  
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t = 44813.4 [yr] tps = 1001.8 [yr] Mps = 1.5 [Msun]
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t = 48848.1 [yr] tps = 5036.5 [yr] Mps = 2.9 [Msun] 
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t = 245172.5 [yr] tps = 5138.6 [yr] Mps = 1.3 [Mun]
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higher accretion rate shortens 
the lifetime of first core	

Massive outflow ! 
> 20 Msun : Outflow mass	
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Discussion : Comparison with Observations 	
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← Mout - Lbol 
 
Observation data is 
a little high	

Pout – Lbol → 
 

Simulation data agree with 
Observations 	
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Discussion : Comparison with Observations 	

← Outflow rate – Lbol 
 
Simulation data almost 
agree with Observation. 
Observation is a little low. 

Eout – Lbol → 
 

Simulation agree with 
Observation	
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Beuther+02 
Zhang+05 
Wu+08 
Maud+15 
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Discussion : Comparison with Observations 	

← Lkin – Lbol 
 
Simulation and 
Observation are almost 
the same 

F – Lbol → 
 

Simulation date is high. 
Caused by estimate of tdyn ?   
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Now analyzing… “ Failed Outflow” 	

↑ Drive	 ↑ Fail	 ↑ No Drive	

central density：3.8×10-19gcm-3 
isothermal temperature：20K 

prepared 6 model 
controls  

initial cloud stability 

set up Mass-to-Flux ratio 
 

　　 2, 3, 5, 10 
change Magnetic strength 
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Results	
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Even if magnetic field is weak, 
Outflow can drive when 
accretion rate is small. 

Even if magnetic field is strong, 
Outflow cannot drive when accretion 
rate is extremely Large. 	
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ü  investigate the relation between mass accretion onto the 
protostar and the magnetically driven outflow 

ü When the i nitial prestellar cloud has a strong magnetic field, 
the outflow is powerful at any accretion rate 

ü  The physical quantities derived  from our simulations 
favorably agree with observation in massive outflow. 

outflow mass / momentum / kinetic energy / 
outflow rate / kinetic luminosity / momentum flux / 

ü  Both low- and high-mass stars form by a common 
fundamental mechanism 
   → must ultimately consider various physical effects. 
        turbulence / radiation effects / etc…	

Conclusion & Future Works	
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Conclusion & Future Works	

Change mass accretion rate 
and magnetic strength 
 
→ Even if magnetic field is 
weak, Outflow can drive when 
accretion rate is small. 
Like low-mass stars. 
→Even if magnetic field is 
strong, 
Outflow cannot drive when 
accretion rate is extremely 
Large.  

ü Compare magnetic 
pressure to ram 
pressure 

→ if magnetic pressure 
strong, outflow driven? 
 
ü angular momentum 

transfer  
→ What is the most 
efficient ?	
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Methods : “ Failed Outflow”	

prepared 6 model 
controls  

initial cloud stability 

set up Mass-to-Flux ratio 
 

　　 2, 3, 5, 10 
change Magnetic strength 
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