Understanding the magnetic field structure in the star formation to the Galactic scales through the maser observations for Zeeman splitting and polarization

Sugiyama, Koichiro
(Center for Astronomy, Ibaraki University)

Collaborators: Kenta Fujisawa; Yoshinori Yonekura
Table of contents

0. Brief introduction for masers
1. What’s advantages of maser observations for the magnetic field?
2. Remarkable works of maser observations for the magnetic field
3. Summary
0. Brief introduction for masers
Interstellar masers

✓ Masers in the star-forming regions
 • Major: OH, H$_2$O, CH$_3$OH
 • Minor: NH$_3$, H$_2$CO, SiO, radio RL

✓ Characteristics
 • Much brighter than thermal lines
 • **Narrow line width**: $\Delta v \sim 0.2-0.5$ km s$^{-1}$
 • Compact size of spot: ~ 1-10 au
 - Some spots consist of core/halo (Minier+ 02)

👉 **very bright**: $T_B \sim 10^7$-10^{12} K

European VLBI spectrum and map of the 6.7 GHz CH$_3$OH maser (Bartkiewicz+ 16).
Usable characteristics of masers

✓ Flux variability
 • Various times-scales: < 1 day – a few month – 1 year <
 • Provide information in 0.1-1 au spatial scales from Keplerian time-scale
 • Remarkable variation: Periodic, Flaring
 • Periodic: stellar pulsation / binary system?
 • Flaring: flare of exciting star / accretion burst / magnetic reconnection?
Usable characteristics of masers

- Flux variability
 - Various times-scales: < 1 day – a few month – 1 year <
 - Provide information in 0.1-1 au spatial scales from Keplerian time-scale
 - Remarkable variation: Periodic, Flaring
 - Periodic: stellar pulsation / binary system?
 - Flaring: flare of exciting star / accretion burst / magnetic reconnection?

- Proper motion with VLBI (a few milliarcsec (mas) spatial resolution)
 - Enable us to detect tiny motions of a few mas yr\(^{-1}\) on disk/outflow/jet
 - Reveal 3-D velocity structure with LSR velocity information
Wide-angle outflow and jet scenario observed in high-mass SFR Cepheus A (Torrelles+ 11). Proper motions of 22 GHz H$_2$O masers showed expanding motions emanated by wide-angle outflow, while a radio jet was observed by radio continuum observation.
Proper motion with Wide-angle outflow and jet scenario observed in high-mass SFR Cepheus A (Torrelles+ 11).

Proper motions of 22 GHz H$_2$O masers showed expanding motions emanated by wide-angle outflow, while a radio jet was observed by radio continuum observation.

Shock propagation formed by wide-angle outflow expanding shell of bow shock propagation

Shock propagation formed by wide-angle outflow

Expanding shell of bow shock propagation

Observed in high-mass SFR Cepheus A (Torrelles+ 11). Showed expanding motions emanated by wide-angle outflow continuum observation.
Usable characteristics of masers

✓ **Flux variability**
 - Various times-scales: < 1 day – a few month – 1 year <
 - Provide information in 0.1-1 au spatial scales from Keplerian time-scale
 - Remarkable variation: Periodic, Flaring
 - Periodic: stellar pulsation / binary system?
 - Flaring: magnetic reconnection / flare of exciting star / accretion burst?

✓ **Proper motion with VLBI** (a few milliarcsec (mas) spatial resolution)
 - Enable us to detect tiny motions of a few mas yr\(^{-1}\) on disk/outflow/jet
 - Reveal 3-D velocity structure with LSR velocity information

✓ **Magnetic field strength and 3D structure**
 - Circular polarization => Zeeman splitting
 - Linear polarization => Polarization vector
 - Convertible to the direction of the magnetic field axes
1. What’s advantages of maser obs. for magnetic (B) field?
Importance of B field

✓ Launch outflow/jets and magnetic braking
 • Removal of angular momentum
 • Maintain accretion through disk

✓ Launch mechanism and morphology of outflow/jets affected by the strength and the configuration of the B field (Machida+ 08)
 • Outflow: low-velocity and hourglass-like, caused by strong B field and the magnetocentrifugal force
 • Jet: high-velocity and well-collimated, caused by weak B field and the magnetic pressure gradient force

3D MHD simulations to understand the outflow/jet launching mechanism and morphology in the star-forming core (Machida+ 08). These figures show the relation among velocities, collimations, B field strength, and morphology.
e.g.) Dust pol. obs.

- Aligned dust by B field
- Measure polarization vector, convertible to the B field on the plane of sky
 - e.g., “hourglass” shape (e.g., Girart+ 06)

- Weak points
 - Impossible to direct measurement of the strength of B field
 - may be estimated by comparing the gravitational force as an upper limit at collapse phase
 - Hard to trace high-density area ($> 10^8$ /cc)
e.g.) Zeeman splitting obs.

✅ Energy quantum state is split by the \(B \) field into multiple states

✅ Measure the strength of the \(B \) field directly!

✅ To date in thermal lines, measured from HI, OH, and CN (e.g., Crutcher+ 99; Falgarone+ 08)
 • Low-density (\(< 10^4 \) /cc) : HI, OH
 • High-density (\(10^4-10^6 \) /cc) : CN

✅ Weak points
 • Split coefficient is much smaller than thermal line-width : \(~1\) Hz/\(\mu G\)
 • Signal-to-noise ratio is not enough to detect circular polarized spectrum

☞ a few detections in the high-density tracer

![CN Zeeman spectra of Stokes \(I \) (top) and \(V \) (bottom) in W3(OH) (Falgarone+ 08).](image)
Advantages of the masers

i. Narrower line-width and brighter emission than thermal lines
 • Enable us to measure for small Zeeman split with high S/N

ii. Pumped in compact and high-dense cloud, called as “spot”
 • Enable us to trace higher-density area than thermal emissions

iii. Both linearly and circularly polarized emission
 • Full stokes parameters (I, Q, U, V) usable to determine 3D B field structure

iv. Combined with dynamics (3D velocity structure) information
 • Understand dynamical motions and magnetic structures, simultaneously
ii. High-density tracer (> 10^6 /cc)

- \(n_{H_2} > 10^6 /cc \)
 - OH : 10^5-10^8 /cc (Cragg+ 02)
 - CH\(_3\)OH : 10^4-10^9 /cc (Cragg+ 05)
 - H\(_2\)O : 10^8-10^{11} /cc (Elitzer+ 92)

- \(B \propto n_{H_2}^{0.47 \pm 0.08} \) (Vlemmings 08)
 - Consistent with Crutcher (99) relation
 - Connect from low to high-density area

Zeeman splitting measurements extensible to high-density area!

Magnetic field strength \(B \) vs the number density \(n_{H_2} \) in high-mass SFR Cepheus A (Vlemmings 08).
iii. Full stokes (linear and circular)

- Masers linearly and circularly polarized
 - Linear: 2D pol. vector on the plane of sky
 - Circular: Strength and radial 1D pol. vector through Zeeman split

![3D B field structure]

RCP definition

Stokes \(V = RCP - LCP \) (the IAU convention)

the IEEE convention

Image credit: Green+ (14)
iv. Combined with 3D vel. structure

- Totally understanding through the compact gas cloud “spot”
 - Spatial distribution
 - Dynamics from 3D vel. structure
 - \(B \) field structure

- e.g.) evolved AGB star W43A case
 - 3D vel. structure well fitted by precessing jet model (Imai+ 02)
 - Toroidal \(B \) field structure measured through linear pol. of \(\text{H}_2\text{O} \) masers (Vlemmings+ 06a)

\[\uparrow: \text{Proper motions detected for \(\text{H}_2\text{O} \) masers in the evolved AGB star W43A (Imai+ 02).} \]
iv. Combined with 3D vel. structure

↑: B field direction converted from linear pol. vector of the H$_2$O masers in W43A (Vlemmings+ 06a). ↓: Toroidal B field model inferred of H$_2$O maser results.

↑: Proper motions detected for H$_2$O masers in the evolved AGB star W43A (Imai+ 02). ↓: Precessing jet model fit to 3D velocity structure of H$_2$O masers.
2. Remarkable works of maser obs. for the magnetic field
B field parameters of the masers

<table>
<thead>
<tr>
<th></th>
<th>OH</th>
<th>CH$_3$OH</th>
<th>H$_2$O</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν [GHz]</td>
<td>1.6-1.7</td>
<td>6.7</td>
<td>22.2</td>
</tr>
<tr>
<td>Coefficient [Hz/μG]</td>
<td>2-3</td>
<td>\sim10$^{-4}$* (Jen 1951)</td>
<td>\sim10$^{-3}$</td>
</tr>
<tr>
<td>Trace</td>
<td>Edeg of HII region</td>
<td>Accretion disk</td>
<td>Outflow/jet</td>
</tr>
<tr>
<td>fraction L</td>
<td>\sim10-20%</td>
<td><1-20%</td>
<td><1-10%</td>
</tr>
<tr>
<td>fraction C</td>
<td>\sim50-60%</td>
<td><1-5%</td>
<td><1-5%</td>
</tr>
<tr>
<td>Strength</td>
<td>\sim10-50</td>
<td>\sim10-100 *</td>
<td>\sim10-1000</td>
</tr>
<tr>
<td>Note.</td>
<td>Strongly affected by RM</td>
<td>* Large uncertainty of coefficient</td>
<td></td>
</tr>
</tbody>
</table>

Ref. --- e.g., Szymczak & Gerard (09); Surcis+ (12, 15); Vlemmings (08, +11)
Case 1. W75 N

~ rapidly evolution of outflow morphology and B field structures ~
High-mass star-forming region W75 N

- Part of Cygnus X region
- Distance: 1.30 kpc (Rygl+ 12)
- Three YSO candidates at different evolutionary phase (Carrasco-Gonzalez+ 10)
 - **VLA1**: oldest
 - Index: -0.4 ±0.1 => optically thin, free-free
 - **VLA2**: younger than VLA1
 - Index: 2.2 ±0.3 => optically thick, free-free
 - **VLA3**: youngest
 - Index: 0.6 ±0.1 => thermal jet
H$_2$O maser distributions and motions

- **VLA1**: elongated NE-SW direction
 - Bipolar motion toward NE-SW
- **VLA2**: spherical morphology
 - Spherically expanding motion
Rapidly change of spatial distribution and B field structure of H$_2$O maser in VLA2

✔ Spatial distribution of H$_2$O maser in VLA2 in \sim8 yrs (Kim+ 13)
 - Spherical \Rightarrow Elongated to NE-SW

VLBI maps at 3 epochs (Torrelles+ 03; Surcis+ 11; Kim+ 13).
Rapidly change of spatial distribution and B field structure of H$_2$O maser in VLA2

- Surcis+ (14) detected rapidly changes of the B field structure in 7 yrs
 - the direction of the B field: $+18 \Rightarrow +57$ deg
 - the strength of the B field: 345 mG $\Rightarrow 128$ mG
Rapidly change of spatial distribution and B field structure of H_2O maser in VLA2

- Spatial distribution of H_2O maser in VLA2 in ~ 8 yrs (Kim+ 13)
 - Spherical \Rightarrow Elongated to NE-SW

- B field structure of H_2O maser in VLA2 in ~ 7 yrs (Surcis+14)
 - Direction: $+18 \Rightarrow +57$ deg
 - Strength: $345 \text{ mG} \Rightarrow 128 \text{ mG}$

- Short-lived, isotropic, ionized wind in the strong B field predicted by MHD simulation (e.g., Machida+ 08; Seifried+ 12)
 - Collimated as being evolved

VLBI maps at 3 epochs (Torrelles+ 03; Surcis+ 11; Kim+ 13).
1.3 cm continuum distribution was also changed in ~20 yr in VLA2 (Carrasco-Gonzalez+ 15)

- Spherical \Rightarrow Elongated to NE-SW

Verified short-lived, isotropic, ionized wind whose morphology evolves into elongated to NE-SW inferred from H$_2$O maser observations (dynamics & B)!!

Carrasco-Gonzalez+ (15)
Alignment of the B direction?

- Surcis+ (14) detected alignment of B field direction in VLA1 and VLA2
 - VLA1: $+49 \pm 15$ deg, VLA2: $+57 \pm 21$ deg
 - Nearly perpendicular filament structure traced by NH$_3$ emission.

\checkmark
Case 2. Statistical study in star-formation scale

~ relationship of the orientations between B field and outflow axes ~
B field vs outflow axes

✓ Measured \(B \) field of \(\text{CH}_3\text{OH} \) masers in \(\sim 20 \) high-mass YSOs (Surcis+ 12, 13, 15)

✓ Orientation of the \(B \) field along the outflow axes, preferentially
 - At least, on scales of 10-100 au

Comparison of the \(B \) field orientation from \(\text{CH}_3\text{OH} \) maser obs. to the outflow axes (Surcis+ 13).

PDF and CDF of the projected angle between the \(B \) field and the outflow axes (Surcis+ 13).
Case 3. Statistical study in the Galactic scale

~ Galactic structure of the B field ~
‘MAGMO’ project through Zeeman splitting of OH masers

- MAGMO: the Magnetic field of the Milky Way through OH masers (e.g., Green+ 12)
- Pilot survey: 6 high-mass sources 280<l<295°, |B_\parallel|~1-10 mG, Same orientation
4. Summary
Summary

✓ B field observations of the masers is usable
 • Narrower line-width and brighter emission than thermal one
 • Pumped in compact dense cloud (10^6-10^{11} /cc)
 • Both linearly and circularly polarized (full stokes I, Q, U, V)
 • Combined with dynamics (3D velocity structure) information

✓ Remarkable works of the maser B field obs.
 • W75 N : short-lived, isotropic, ionized wind in the strong B field whose morphology evolves into elongations (e.g., Surcis+ 14; Carrasco-Gonzalez+ 15)
 • Statistical study (e.g., Surcis+ 12, 13, 15; Green+ 12)
 • in the star formation scale : Alignment of the B field along the outflow axes
 • in the Galactic scale : Zeeman splitting measurements throughout the Milky Way ‘MAGMO’