# ALMA reveals a hub of filamentary molecular clouds in Sgr B2(N)

#### Aya Higuchi (RIKEN)

Atsushi Nishimura (Nagoya University) Tetsuo Hasegawa, Patricio Sanhueza, Kazuya Saigo (NAOJ) James Chibueze (University of Nigeria)





#### 

## SgrB2

- Giant molecular cloud in th
  - D=7.8kpc (Reid et al. 2009)
  - T=50-100K; n=10<sup>6-7</sup>cm<sup>-3</sup>; M=10<sup>7</sup>M<sub>sur</sub>
  - Chemically rich complex
    - Line survey (Belloche et al. 2013

## Star forming activities in S<sub>8</sub>

- Site of massive star formation tr
  - Massive dense cores formed (Hasegawa et al. 1994)
- SgrB2(N) -K2: massive stars at t
  - Particularly rich in complex or
  - Massive system of rotating to







## SgrB2(N): C<sup>18</sup>O filamentary structure





## Does the core form from the filaments?

#### Physical condition of the filaments

- Filament width = 0.1pc, dv=1-2km/s
- Line mass= 10<sup>2</sup>M<sub>sun</sub>/pc : optically thin, LTE at T=100K, X(C<sup>18</sup>O)=10<sup>-7</sup>
  - 50-60% of flux in the 16" beam of Nobeyama 45-m telescope is reproduced
  - Total filament mass (10<sup>3</sup>M<sub>sun</sub>) is smaller compared with that of the core (10<sup>4</sup>M<sub>sun</sub>)
- No rapid mass flow along the filaments discerned (within the limited velocity resolution of 1.2 km/s of the observations)



## Identification of the filaments: by A. Nishimura



## **Identification of the filaments**

### **Origin of the filaments**

- SE-NW filament
  - results of interaction with the bipolar outflow (Higuchi et al. 2015b)
  - alignment with the outflow
- The other filaments
  - formed in a sheet with a large velocity sheer of -30 km/s/pc at the cloud collision interface



Dec. (J2000)

## Summary

#### **Physical condition of the filaments**

- C<sup>18</sup>O(1-0) 1.9"×1.4" (0.07×0.05 pc) resolution image (ALMA archival data without ACA)
  - 50-60% of flux in the 16" beam of Nobeyama 45-m telescope is reproduced
- A hub of 10 filaments centered at the massive-star forming hot core at K2
  - Filaments have the typical 0.1 pc diameter, but with relatively large line mass of  $10^2 \ M_{\text{sun}}/\text{pc}$ 
    - SE NW filaments may be a result of interaction with the massive bipolar outflow
    - The other filaments may have formed in a sheet with large velocity sheer at the cloud collision interface
  - The total filament mass (10<sup>3</sup> M<sub>sun</sub>) is small compared with that of the core (>10<sup>4</sup> M<sub>sun</sub>)
- Not a positive evidence for the core forming from the filaments

## Magnetic field in SgrB2 region

