ALMA reveals a hub of filamentary molecular clouds in Sgr B2(N)

Aya Higuchi (RIKEN)
Atsushi Nishimura (Nagoya University)
Tetsuo Hasegawa, Patricio Sanhueza, Kazuya Saigo (NAOJ)
James Chibueze (University of Nigeria)

SgrB2

- Giant molecular cloud in th
- $D=7.8 \mathrm{kpc}$ (Reid et al. 2009)
- $\mathrm{T}=50-100 \mathrm{~K} ; \mathrm{n}=10^{6-7} \mathrm{~cm}{ }^{-3 ;} \mathrm{M}=10^{7} \mathrm{M}_{\text {su }}$
- Chemically rich complex
- Line survey (Belloche et al. 2013
- Star forming activities in S
- Site of massive star formation tr
- Massive dense cores formed (Hasegawa et al. 1994)
- SgrB2(N) -K2: massive stars at t
- Particularly rich in complex o
- Massive system of rotating tc

SgrB2(N): $\mathbf{C l}^{180}$ filamentary structure

Does the core form from the filaments?

Physical condition of the filaments

- Filament width $=0.1 \mathrm{pc}, \mathrm{dv}=1-2 \mathrm{~km} / \mathrm{s}$
- Line mass= $10^{2} \mathrm{M}_{\text {sun }} / \mathrm{pc}:$ optically thin, LTE at $\mathrm{T}=100 \mathrm{~K}, \mathrm{X}\left(\mathrm{C}^{18} \mathrm{O}\right)=10^{-7}$
- 50-60\% of flux in the 16 " beam of Nobeyama 45-m telescope is reproduced
- Total filament mass $\left(1^{3} \mathrm{M}_{\text {sun }}\right)$ is smaller compared with that of the core ($10^{4} \mathrm{M}_{\text {sun }}$)
- No rapid mass flow along the filaments discerned (within the limited velocity resolution of $1.2 \mathrm{~km} / \mathrm{s}$ of the observations)

Identification of the filaments: by A. Nishimura

Identification of the filaments

Origin of the filaments

- SE-NW filament
- results of interaction with the bipolar outflow (Higuchi et al. 2015b)
- alignment with the outflow
- The other filaments
- formed in a sheet with a large velocity sheer of -30 $\mathrm{km} / \mathrm{s} / \mathrm{pc}$ at the cloud collision interface

Summary

Physical condition of the filaments

- $\mathrm{C}^{18} \mathrm{O}(1-0) 1.9^{\prime \prime} \times 1.4^{\prime \prime}(0.07 \times 0.05 \mathrm{pc})$ resolution image (ALMA archival data without ACA)
- $50-60 \%$ of flux in the 16 " beam of Nobeyama $45-m$ telescope is reproduced
- A hub of 10 filaments centered at the massive-star forming hot core at K2
- Filaments have the typical 0.1 pc diameter, but with relatively large line mass of 10^{2} Msun/pc
- SE - NW filaments - may be a result of interaction with the massive bipolar outflow
- The other filaments - may have formed in a sheet with large velocity sheer at the cloud collision interface
- The total filament mass $\left(10^{3} \mathrm{Msun}\right)$ is small compared with that of the core ($>10^{4} \mathrm{M}$ sun)
- Not a positive evidence for the core forming from the filaments

Magnetic field in SgrB2 region

