星形成銀河における円盤不安定性と 星形成クランプの形成プロセス

Disc instability in star-forming galaxies and formation mechanisms of their giant clumps

井上 茂樹 カブリ数物連携宇宙研究機構 / 東京大学 Shigeki Inoue Kavli IPMU / U Tokyo

I am going to talk about "giant clumps" in galaxies

•"clump"

• is a very ambiguous word.

• e.g. gas clouds, star cluster, dwarf galaxies etc.

- In this talk, "clump" I refer to as is
 - "giant clumps"
 - found in gas-rich galaxies (mainly in high-z galaxies)
 - massive star clusters containing much gas
 - ~10⁸ M $_{\odot}$ at the largest, ~1 kpc in size.
 - actively star-forming

Star formation in galaxies

Colour – stellar mass relation

Star formation in galaxies

Star formation in galaxies

Colour – stellar mass relation

Star-formation "main sequence"

- Tight correlations between stellar mass and SFR
 - Evolving with redshifts
 - The origin is still a mystery

Whitaker et al. (2012)

What do the "main-sequence" galaxies look like?

Many of SF galaxies are clumpy

Clumpy galaxies

- observed mainly at high redshifts z~2.
- Quite rare at low-redshifts.

Guo et al. (2014)

- \bullet The clumpy structures are detected with H α and UV light.
 - They are star-forming clumps
 - ~10⁸ M_{\odot} at the largest, ~1 kpc in size

Many of SF galaxies are clumpy

- Each clump accounts for \sim 10% of the galactic total SFR.
- The total SFR in the clumps accounts for \sim 50% of the galactic SFR.
 - although the SFR fraction depends on spatial resolutions
 - see Dessauges-Zavadsky et al. 2016, Cava et al. 2017

Giant clumps are the main SF sites in gas-rich clumpy galaxies.

Clumpy fraction and cosmic SFR

Clumpy fraction and cosmic SFR

Redshift

Fate of giant clumps: longevity or ephemerality?

The long-lived scenario

- Noguchi 98, 99; Immeli+ 04; Bournaud+ 06, 08, 14; Ceverino+ 10, 12; Inoue+ 11, 12, 14; Forbs+ 13; Moody+ 14
- Observed giant clumps are gravitationally bound structures.
 - migrate to the galactic centres by dynamical friction and finally form bulges.
- Possible if feedback processes are weak and/or clump masses are large.

The short-lived scenario

- Genel+ 12; Hopkins+ 11; Buck+ 17; Oklopčić+ 17.
- Observed giant clumps are less-bound and/or tidally disrupted soon.
 - cannot migrate to the galactic centres and are transient structures.
- Possible if feedback processes are strong and/or clump masses are small.

Still under debate

Clump formation and star formation

- Thus, formation mechanisms of giant clumps are closely related to (global) physics of star formation in galaxies.
 - What drives giant-clump formation?
 - Gravitational instability (GI)
 - Cosmological gas accretion
 - Galactic mergers
 - What suppress giant-clump formation? (why clumps disappear?)
 - Disc stabilization by gas consumption and/or heating
 - Growth of a massive bulge
 - Cessation of galactic mergers

"Non-linear violent disc instability with high Toomre's Q in high-redshift clumpy disc galaxies"

MNRAS, 456, 2052 (2016)

SI, Avishai Dekel, Nir Mandelker, Daniel Ceverino, Frederic Bournaud, Joel Primack

Why are they clumpy?

- It has been proposed;
 - Galaxies are highly gas-rich (stream-fed) in their early formation stages.
 - Cold gas discs in the galaxies are **Toomre unstable** (Noguchi 1998, 1999).
 - <u>Clump formation is caused by 'Toomre instability'</u>

Inoue & Saitoh (2012)

Toomre instability

- From a **local** and **linear** perturbation theory for **axisymmetric** perturbations,
- In observations,

Toomre instability

- However, dynamically unstable states cannot be long-lasting.
 - The unstable regions will collapse soon, then their disc (inter-clump) regions turn over to stable states within the local dynamical time-scales.

The observation might be underestimating Toomre Q...

Toomre analysis in cosmological sims.

Cosmological simulations
Ceverino et al. (2010, 2013) using ART code
10pc-order resolution with radiation pressure.

How to measure Q_{2comp} • <u>2-component model</u> (Romeo & Wiegert 2011)

$$Q_{gas} = \frac{\kappa_{gas}\sigma_{gas}}{\pi G\Sigma_{gas}}, \quad Q_{star} = \frac{\kappa_{star}\sigma_{star}}{3.36G\Sigma_{star}}$$

$$\begin{cases} Q_{2comp}^{-1} = WQ_{gas}^{-1} + Q_{star}^{-1} & (if \ Q_{gas} > Q_{star}) \\ Q_{2comp}^{-1} = Q_{gas}^{-1} + WQ_{star}^{-1} & (if \ Q_{gas} < Q_{star}) \\ W \equiv \frac{\sigma_{gas}\sigma_{star}}{\sigma_{gas}^{2} + \sigma_{star}^{2}} \end{cases}$$

- σ is velocity dispersion (not sound speed).
- κ is calculated from mean velocity fields of gas/star.

$$\kappa \equiv \sqrt{2 \frac{\langle v_{\phi} \rangle}{R} \left(\frac{d \langle v_{\phi} \rangle}{dR} + \frac{\langle v_{\phi} \rangle}{R}\right)}$$

- Young stars (age<100 Myr) are considered to be "gas "
- Bulge stars are removed ; $j_z/j_{max} < 0.7$
- Gaussian smoothing with **FWHM=1.2 kpc**
 - to focus on $M_{clump} = 10^{8-9} \,\mathrm{M}_{\odot}$
- A razor-thin disc model (which gives lower limits)

Cosmological simulations

- V07
- z = 2.13
- $M_{vir} = 8.8 \times 10^{11} \mathrm{M}_{\odot}$
- $M_{star} = 5.6 \times 10^{10} \text{ M}_{\odot}$
- $f_{gas} = 0.18$
- B/T = 0.37 (kinematic) ³
- $SFR = 27.5 \ M_{\odot} \ yr^{-1}$

Purple Q<1: linear instability</th>Blue Q=1-1.8: non-linear instabilityGreen Q=1.8-3: dissipative instabilityYellow, Red, Black: Q>3: stable stateWhite: imaginary κ (Q cannot be defined)

- Instability (Q<1) can only be seen in/around the clumps.
- Disc (inter-clump) regions seem to be stable (Q>2).

Purple Q<1: linear instability</th>Blue Q=1-1.8: non-linear instabilityGreen Q=1.8-3: dissipative instabilityYellow, Red, Black: Q>3: stable stateWhite: imaginary κ (Q cannot be defined)

Cosmological simulations

z [kpc] •V08 z = 1.33 $M_{vir} = 6.0 \times 10^{11} \,\mathrm{M}_{\odot}$ $M_{star} = 1.9 \times 10^{10} \mathrm{M}_{\odot}$ • $f_{gas} = 0.42$ $f_{gas} = 0.12$ $B/T = 0.45 \text{ (kinematic)}_{\overline{S}}$ • $SFR = 33.1 \ {\rm M_{\odot} \ yr^{-1}}$

- Instability (Q<1) can only be seen in/around the clumps.
- Disc (inter-clump) regions seem to be stable (Q>2).

Purple Q<1: linear instability</th>Blue Q=1-1.8: non-linear instabilityGreen Q=1.8-3: dissipative instabilityYellow, Red, Black: Q>3: stable stateWhite: imaginary κ (Q cannot be defined)

Cosmological simulations

• V13 • z = 1.78• $M_{vir} = 3.4 \times 10^{11} M_{\odot}$ • $M_{star} = 1.2 \times 10^{10} M_{\odot}$ • $f_{gas} = 0.40$ • B/T = 0.46 (kinematic) • $SFR = 11.2 M_{\odot} \text{ yr}^{-1}$

- Instability (Q<1) can only be seen in/around the clumps.
- Disc (inter-clump) regions seem to be stable (Q>2).

Purple Q<1: linear instability
 Blue Q=1-1.8: non-linear instability
 Green Q=1.8-3: dissipative instability
 Yellow, Red, Black: Q>3: stable state
 White: imaginary κ (Q cannot be defined)

Non-linear formation of clumps

V07 a=0.2892

Non-linear formation of clumps

- Distributions of Q on proto-clumps.
- The initial masses $M_{clump} > 10^8 M_{\odot}$

Clump detection scheme (Mandelker+ 2014)

(Mandelker+ 2014) We trace clumps back in time and space, and then we look into proto-clumps which are detected for the first time.

Non-linear formation of clumps

- Distributions of Q on proto-clumps.
- The initial masses $M_{clump} > 10^8 M_{\odot}$

- <u>Non-perturbative scenarios</u>
 - Gas dissipation

• $Q_{crit} = 2 - 3$ if gas cooling is rapid. (Elmegreen 2011)

- <u>Non-perturbative scenarios</u>
 - Gas dissipation
 - • $Q_{crit} = 2 3$ if gas cooling is rapid. (Elmegreen 2011)
 - Small-scale formation and merger/accretion growth
 - Q can be <1 on small scales (e.g. Romeo et al 2010)
 - Q-measurement can depend on physical scales, e.g. Larson low
 - \bullet We applied the Gaussian smoothing with FWHM=1.2 kpc

A giant clump may form by mergers of small clumps. (Behrendt et al. 2015)

- <u>Non-perturbative scenarios</u>
 - Gas dissipation
 - $Q_{crit} = 2 3$ if gas cooling is rapid. (Elmegreen 2011)
 - Small-scale formation and merger/accretion growth
 - Q can be <1 on small scales (e.g. Romeo et al 2010)
 - Non-axisymmetric perturbation
 - • $m \neq 0$ perturbations (Griv & Gedalin 2012)
 - unstable up to $Q \cong 2$ for finite thickness.

- <u>Perturbative scenarios</u>
 - Minor mergers
 - Satellite accretion can disturb a disc.
 - Pre-existing clumps
 - Clumps also disturb a disc and stimulate formation of other clumps.
 - •Cold stream flowing in a disc
 - Streams can join a disc with slow or counter rotation.
 - Slow rotation leads to low κ

- <u>Perturbative scenarios</u>
 - Minor mergers
 - Satellite accretion can disturb a disc.
 - Pre-existing clumps
 - Clumps also disturb a disc and stimulate formation of other clumps.
 - •Cold stream flowing in a disc
 - Streams can join a disc with slow or counter rotation.
 - Compressive turbulence
 - Compressing gas can indicate a high σ (i.e. high Q)
 - But a clump will form there

Toomre instability

• In observations,

 $Q \le 1$ in the observations. Q > 1 in our simulations.

Obs. vs. sims.

• Toomre Q of gas component.

• $Q \leq 1$ in the observations.

 \sim 3-5 times lower in the obs.

Obs. vs. sims.

- Toomre Q of gas component.
- $Q \leq 1$ in the observations.
 - <u>The observation might be underestimating Q.</u>
 - Perhaps, it might be die to overestimation of gas density.
 - The gas density in obs. is measured from Ha luminosity.

- e.g.
 - KS relation may be different in high-z galaxies...?
 - Star-formation efficiency may be higher in high-z galaxies...?

Summary

- Q>2-3 in disc (inter-clump) regions,
- Q<1 inside/around giant clumps.
- Formation of new clumps can start with Q>2-3.

Clump formation is NOT NECESSARILY due to the (standard) Toomre instability.

- Maybe induced by other mechanisms.
 minor mergers, pre-existing clumps, cold streams, etc..
- There is tension between our sims and IFS obs.
 Gas density may be overestimated in IFS?

Transition of giant clump formation mechanisms at z~2: from Toomre to spiral-arm instabilities Beyond Toomre's Q

MNRAS in press arXiv: 1706.01895

Shigeki Inoue (Kavli IPMU / UTokyo) w/ Naoki Yoshida, Takatoshi Shibuya

Spiral or Clumpy?

- Clumpy galaxies
 - Giant clumps
 - Gas-rich (f_{gas}>30%)

Guo et al. (2014)

Spiral-arm fragmentation?

Spiral galaxies emerge at z<2 (Elmegeen+14)

Spiral or Clumpy?

- Isolated disc galaxy simulations
 - Gas + stellar discs
 - Isothermal gas (no star formation, no feedback)
 - Moving-mesh code: Arepo

Spiral-arm fragmentation as a clump formation mechanism

- Spiral arms can fragment into clumps,
 - if the gas fraction is high and/or the disc is kinematically cold.
- Spiral-arm fragmentation is not Toomre instability!
- Spiral-arm fragmentation could be a possible mechanism of giant clump formation.

Beyond Toomre's Q

- The aims of this study:
 - How spiral-arm fragmentation occurs?
 - Derive an instability parameter and its criterion

linear perturbation theory for a spiral arm

Takahashi, Tsukamoto & Inutsuka (2016)

- Proto-planetary discs
- Spiral-arm fragmentation takes place only if Q < 0.6 on the spiral arm.
- Their linear perturbation analysis also supports this criterion.

Set-up for the linear perturbation theory

- Now considering...
 - Gravitational instability for <u>azimuthal</u> perturbations on an <u>axisymmetric</u> spiral (ring).

Set-up for the linear perturbation theory

- Now considering...
 - Gravitational instability for <u>azimuthal</u> perturbations on an <u>axisymmetric</u> spiral (ring).

A dispersion relation for a single-component model

• One can obtain the dispersion relation for the perturbations,

$$\omega^2 = \left(c_s^2 + \frac{\Upsilon}{\delta\Upsilon}\delta\Phi\right)k^2 + 4\Omega^2.$$

• The Poisson equation for the perturbations is

A dispersion relation for a single-component model

• One can obtain the dispersion relation for the perturbations,

$$\omega^2 = \left(c_s^2 - \pi Gf(kW)\Upsilon\right)k^2 + 4\Omega^2.$$

(cf. Takahashi, Tsukamoto & Inutsuka 2016)

• This can be transformed as

$$\frac{c_s^2 k^2 + 4\Omega^2 - \omega^2}{\pi G f(kW) \Upsilon k^2} = 1.$$

- When $\omega^2 < 0$, the spiral is unstable.
- Considering this in the boundary case $\omega^2 = 0$, the new instability parameter and its criterion can be defined as

$$S \equiv \frac{c_s^2 k^2 + 4\Omega^2}{\pi G f(kW) \Upsilon k^2} < 1.$$

A dispersion relation for a two-component model

• A galaxy usually has gas and stars. The dispersion relations of gas and stars are,

$$\begin{array}{l} \mbox{gas:}\\ \omega^2 = \left(c_s^2 + \frac{\Upsilon_g}{\delta\Upsilon_g}\delta\Phi\right)k^2 + 4\Omega^2, \\ \mbox{stars:} \\ \end{array} \qquad \delta\Upsilon_g = k^2 \frac{\Upsilon_g}{\omega^2 - 4\Omega^2 - c_s^2k^2}\delta\Phi, \\ \delta\Upsilon_s = k^2 \frac{\Upsilon_s}{\omega^2 - 4\Omega^2 - \sigma_\phi^2k^2}\delta\Phi, \\ \end{array}$$

 Because gas and stars interact only through gravity, they are connected in the Poisson eq.,

$$\delta \Phi = -\pi G \left[\delta \Upsilon_{\rm g} f(kW_{\rm g}) + \delta \Upsilon_{\rm s} f(kW_{\rm s}) \right]$$

• Then, one can obtain the two-component dispersion relation,

$$\left[\frac{\pi Gk^2\Upsilon_{\rm g}f(kW_{\rm g})}{c_s^2k^2+4\Omega^2-\omega^2}+\frac{\pi Gk^2\Upsilon_{\rm s}f(kW_{\rm s})}{\sigma_\phi^2k^2+4\Omega^2-\omega^2}\right]=1,$$

• Finally, I obtain the new instability condition for 2-comp. models,

$$S_{2} \equiv \frac{1}{\pi G k^{2}} \left[\frac{\Upsilon_{g} f(kW_{g})}{c_{s}^{2} k^{2} + 4\Omega_{g}^{2}} + \frac{\Upsilon_{s} f(kW_{s})}{\sigma_{\phi}^{2} k^{2} + 4\Omega_{s}^{2}} \right]^{-1} < 1.$$

The stable case

The stable case

Clump mass estimation

- If the unstable wavelength is long, $\lambda \gg W$,
 - An unstable perturbation is expected to collapse along the arm (1D collapse)

Clump mass estimation

- If the unstable wavelength is long, $\lambda \gg W$,
 - An unstable perturbation is expected to collapse along the arm (1D collapse)

Clump-mass prediction

•
$$M_{cl} \sim \Sigma W \lambda$$

• $M_{cl} \sim 10^8 - 10^{8.5} M_{\odot}$ (predicted)

Clump-mass prediction

Toomre Instability (TI)

(e.g. Dekel et al. 2009)

V.S.

Spiral-Arm Instability (SAI) (Inoue & Yoshida 2017)

For low-z clumpy galaxies

Toomre Instability

Spiral-Arm Instability

Toomre Instability

Spiral-Arm Instability

- Toomre Instability
 - 2D collapse
 - $M_{cl} \sim \pi \Sigma (\lambda/2)^2$

Spiral-Arm Instability

- Toomre Instability
 - 2D collapse
 - $M_{cl} \sim \pi \Sigma (\lambda/2)^2$

- Spiral-Arm Instability
 - 1D collapse
 - $M_{cl} \sim \Sigma W \lambda$

- Toomre Instability
 - 2D collapse
 - $M_{cl} \sim \pi \Sigma (\lambda/2)^2$

Spiral-Arm Instability

 $\lambda_{\rm MU} = 2\pi \left(\frac{\pi \alpha G F_0 A \Sigma W^{1-\alpha}}{8\Omega^2} \right)^{\frac{1}{2-\alpha}}$

- 1D collapse
- $M_{cl} \sim \Sigma W \lambda$

When $S \cong 1$,

• From our analysis, we can obtain scaling relations of properties of giant clumps.

$$\sigma_{\rm cl}^2 \simeq \frac{16}{3} (\pi \epsilon)^{\alpha - 3} (\alpha F_0 f_{\rm g})^{-1} \left(\frac{W^{\alpha/2} R_{\rm cl}^{1 - \alpha/2}}{R_{\rm d}} V \right)^2$$

Spiral-arm instability expected scaling relation:

$$R_{\rm cl} \propto \left(\frac{\sigma_{\rm cl}}{V} R_{\rm d}\right)^{1.3}$$

$$\sigma_{\rm cl}^2 \simeq \frac{a^2}{3\pi\epsilon^3 f_{\rm g}} V^2 \left(\frac{R_{\rm cl}}{R_{\rm d}}\right)^2$$

Toomre instability expected scaling relation:

$$R_{\rm cl} \propto \frac{\sigma_{\rm cl}}{V} R_{\rm d}$$

 R_{cl} : clump radius,

 $\sigma_{
m cl}$:vel. disp. with in clump,

 $R_{\rm d}$: disc radius,

V: disc rot. vel.

Neither model is rejected by the observations.

• From our analysis, we can obtain scaling relations of properties of giant clumps.

$$\frac{M_{\rm cl}}{M_{\rm d,g+s}} \simeq 2 \left[\frac{1}{8} \alpha F_0 \left(A\beta \right)^{3-\alpha} \eta \left(\frac{W}{R_{\rm d}} \right)^{3-2\alpha} \right]^{\frac{1}{2-\alpha}}$$

$$\begin{split} \frac{M_{\rm cl}}{M_{\rm d,g+s}} &\simeq \pi^2 a^{-4} \eta^2. \\ \eta &\approx f_g : \text{gas fraction including DM} \end{split}$$
Toomre instability expected scaling relation:
$$\frac{M_{\rm g,cl}}{M_{\rm g,d}} \propto f_{\rm g}^2, \end{split}$$

 R_{cl} : clump radius,

 $\sigma_{
m cl}$:vel. disp. with in clump,

R_d: disc radius,

V: disc rot. vel.

Toomre Instability

Spiral-Arm Instability

Shibuya & SI (in prep.)

Data from Shibuya+16: HST @ z=0-1

• Our SAI model appears better consistent with the observations of $M_{cl}/M_d \sim 10\%$ clumps.

Transition of the clump formation mechanisms

Clumpy fraction and cosmic SFR

Clumpy fraction and cosmic SFR

Clumpy fraction and cosmic SFR

Summary

 Our SAI model appears better consistent with the low-z observations.

- The TI model cannot reproduce the scaling relation of the observations despite that the TI model relays on fewer assumptions than our SAI model.
- There could be transition of clump formation mechanisms
 - @ z=2~1, from Toomre instability to spiral-arm instability

See arXiv: 1706.01895

A little about magnetic fields for Toomre and spiral-arm instabilities

- The Galactic B-fields are approximately toroidal (Rand & Kulkarni 1989).
- $B_{\theta} \sim 1 \,\mu\text{G}$ (e.g. Inoue & Tabara 1981, Mouschovias 1983,).

- The Galactic B-fields are approximately toroidal (Rand & Kulkarni 1989).
- $B_{\theta} \sim 1 \,\mu\text{G}$ (e.g. Inoue & Tabara 1981, Mouschovias 1983,).
- Radial perturbations

- The Galactic B-fields are approximately toroidal (Rand & Kulkarni 1989).
- $B_{\theta} \sim 1 \,\mu\text{G}$ (e.g. Inoue & Tabara 1981, Mouschovias 1983,).
- Radial perturbations
 - The B-fields work against the perturbations.

Azimuthal B-fields can stabilize azimuthal perturbations by magnetic pressure.

- The Galactic B-fields are approximately toroidal (Rand & Kulkarni 1989).
- $B_{\theta} \sim 1 \ \mu$ G (e.g. Inoue & Tabara 1981, Mouschovias 1983,).
- Radial perturbations
 - The B-fields work against the perturbations.

Azimuthal B-fields can stabilize azimuthal perturbations by magnetic pressure.

- Azimuthal perturbations
 - The B-fields do nothing in azimuthal direction.

R

- The Galactic B-fields are approximately toroidal (Rand & Kulkarni 1989).
- $B_{\theta} \sim 1 \ \mu$ G (e.g. Inoue & Tabara 1981, Mouschovias 1983,).
- Radial perturbations
 - The B-fields work against the perturbations.

Azimuthal B-fields can stabilize azimuthal perturbations by magnetic pressure.

- Azimuthal perturbations
 - The B-fields do nothing in azimuthal direction.
 - But, work against Coriolis force.

- The Galactic B-fields are approximately toroidal (Rand & Kulkarni 1989).
- $B_{\theta} \sim 1 \ \mu$ G (e.g. Inoue & Tabara 1981, Mouschovias 1983,).
- Radial perturbations
 - The B-fields work against the perturbations.

Azimuthal B-fields can stabilize azimuthal perturbations by magnetic pressure.

- Azimuthal perturbations
 - The B-fields do nothing in azimuthal direction.
 - But, work against Coriolis force.

Azimuthal B-fields can destabilize azimuthal perturbations by cancelling Coriolis force.

Toroidal magnetic fields in a disc galaxy

- The Galactic B-fields are approximately toroidal (Rand & Kulkarni 1989).
- $B_{\theta} \sim 1 \, \mu$ G (e.g. Inoue & Tabara 1981, Mouschovias 1983,).
- Radial perturbations: Toomre instability
 - The B-fields work against the perturbations.

Dispersion relation:
$$\omega^2 = (c_s^2 + v_A^2)k^2 - 2\pi G\Sigma k + \kappa^2$$
.
(modified) Toomre Q: $Q' = \frac{\kappa\sqrt{c_s^2 + v_A^2}}{\pi G\Sigma}$.

- Azimuthal perturbations: Spiral-arm instability
 - The B-fields do nothing in azimuthal direction.
 - But, work against Coriolis force.

Dispersion relation:
$$\omega^2 = \left[c_s^2 - \pi G\delta \Upsilon f(kW)\right]k^2 + \frac{4\Omega^2\omega^2}{\omega^2 + k^2v_A^2}.$$

cf. Elmegreen (1987, 1991), Kim & Ostriker (2001)

Ideal MHD simulation

Summary

- Assuming toroidal magnetic fields,
 - The magnetic fields can suppress growth of radial perturbations.
 - Toomre instability can be mitigated.
 - The magnetic fields can enhance growth of azimuthal perturbations.
 - By cancelling Coriolis force
 - Therefore, spiral-arms can be destabilized by the magnetic fields.
- Giant-clump formation by spiral-arm fragmentation can be enhanced in toroidal magnetic fields in a spiral galaxy.