

磁化した星間媒質における分子雲形成・ 進化・破壊と分子雲衝突に誘起された星形成

Star Formation Induced by Cloud-Cloud Collisions and Galactic Giant Molecular Cloud Evolution in the Magnetized ISM

(Kobayashi+ 2017 in ApJ, 2018 in revision in PASJ, 2018 in progress.)

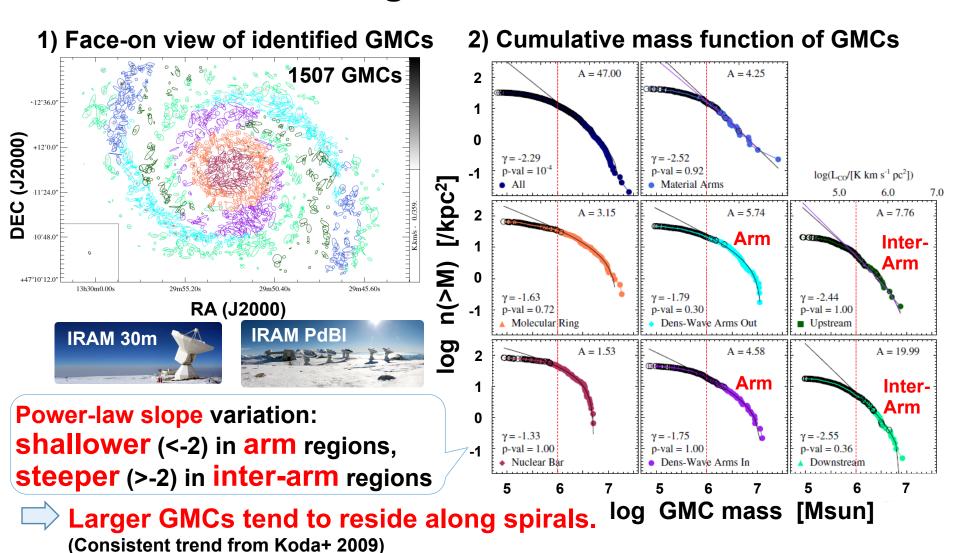
Masato I.N. KOBAYASHI

BISTRO workshop 2017, Dec. 20th 2017 at Kagoshima U

Collaborators; Shu-ichiro Inutsuka, Hiroshi Kobayashi, Yasuo Fukui, Kenji Hasegawa, Tsuyoshi Inoue (Nagoya U)

Team BISTRO-J

Outline

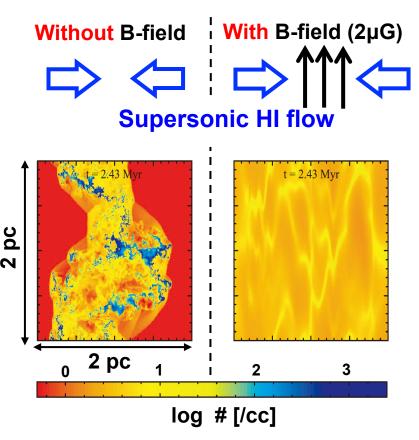

- ✓ Background
 - Multiple Episodes of Compression in magnetized ISM
- √ Time Evolution of GMCs on Galactic Scales
 - Network of expanding shells
 - Formulation of GMC MF evolution with Cloud-Cloud Collisions (CCC)
- √ CCC-driven (Massive) Star Formation
 - Rapid dispersal of GMCs
- ✓ Towards Galactic-Scale Studies
 - Shock propagation in the multiphase ISM
- ✓ Summary

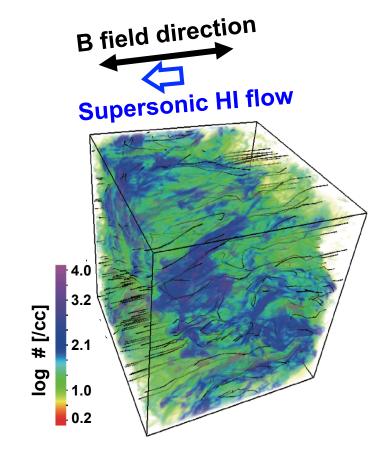
Backgrounds

- √ Observed GMC MF
- ✓ Multiphase Simulations
- ✓ Multiple Episodes of Compressions

IRAM: GMC Distribution in M51

Sub-division in the galactic disk (Colombo+ 2014a)

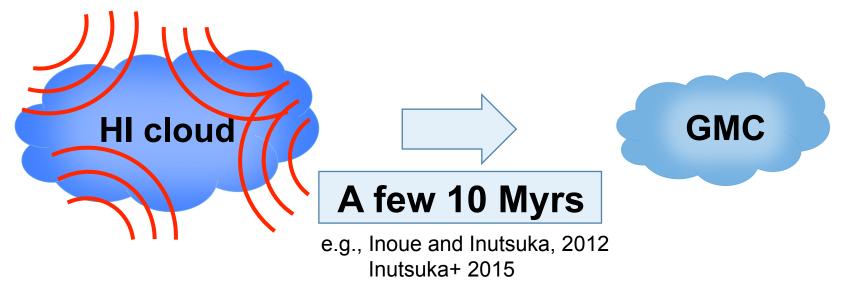

ISM Simulations


Similar results (e.g., Heitsch+ 2009, Körtgen & Banerjee 2015, Valdivia+ 2016)

Magnetic fields retard cloud formation

Inoue & Inutsuka, 2008

Inoue & Inutsuka, 2012

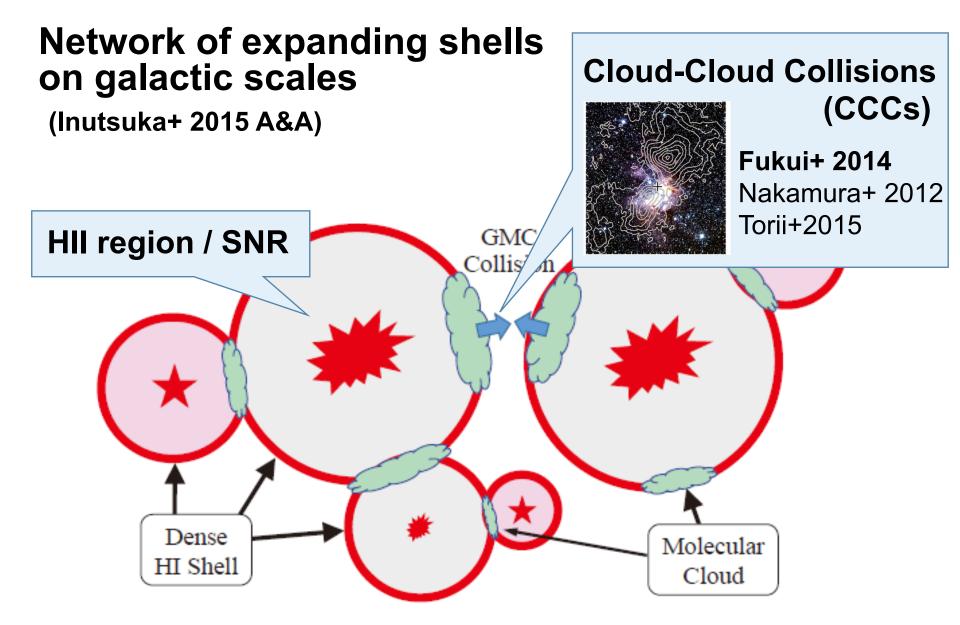


Cloud formation take place after supersonic compression with multiple times.

ISM Simulations

Typical time scale for GMC formation

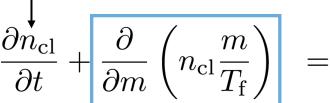
Multiple episodes of compression is essential to form molecular clouds from magnetized WNM, which occupy most of the volume in galactic disks.



Goal: determine how this multiple compression governs the observed variation in GMC mass functions.

Time Evolution of GMCs on Galactic Scales

- ✓ Network of expanding shells
- √ Formulation of GMC MF evolution


GMC Formation & Evolution

Formulation

(c.f., Levinson & Roberts 1981, Kwan 1979, Scoville & Hersch 1979, Cowie 1980, Tomisaka 1984)

 $n_{
m cl}$: differential number density of GMCs with mass m



due to radiation by massive stars (Td ~ 14 Myr; c.f. radiation hydrodynamics simulation: Inutsuka 2015)

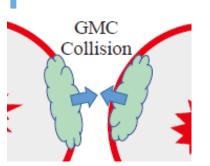
GMC formation/growth

through compressions

$$+\frac{1}{2}\int_{0}^{\infty}\int_{0}^{\infty}K(m_{1},m_{2})n_{{\rm cl},1}n_{{\rm cl},2}$$

$$\times \delta(m-m_1-m_2)\mathrm{d}m_1\mathrm{d}m_2$$

$$-\int_0^\infty K(m,m_2)n_{\rm cl}n_{\rm cl}dm_2$$


$$+ \left. \frac{1}{m} \frac{\partial \left(n_{\rm cl} m \right)}{\partial t} \right|_{\rm res}$$

Gas Resurrection

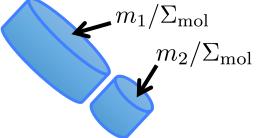
(Replenishment of minimummass population)

Cloud-Cloud Collisions (CCCs)

(coagulation)

 $n_{
m cl}$

Dispersed Compressions

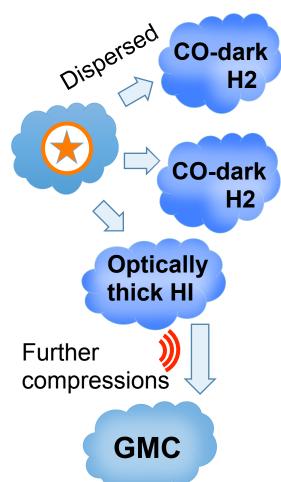

Kernel Function (Collision Rate)

Kernel = cross section x **relative velocity**

$$K(m_1, m_2) = \sigma_{\text{col } 1, 2} V_{\text{rel}} \sim \frac{m_1 + m_2}{\Sigma_{\text{mol}}} V_{\text{rel}}$$

Column Density:
$$\Sigma_{
m mol} \sim 2 imes 10^{22} \mu m_{
m H}/{
m cm}^2$$
 (Onishi+ 1999, Tachihara+ 2000)

Cross Section:
$$\sigma_{\mathrm{col}\,1,2} \sim \left(m_1 + m_2\right)/\Sigma_{\mathrm{mol}}$$



~ 7.5² pc² for collisions between 10⁴ Msun GMCs

Relative Velocity: $V_{
m rel} \sim 10 {
m km/s}$ (Stark & Lee, 2005, 2006)

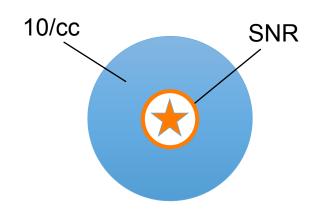
Fate of Dispersed Gas

Dispersed gas may resurrect to replenish the minimum-mass population.

Total gas dispersal rate due to stellar feedback

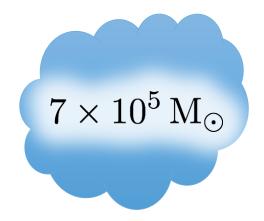
Minimum-mass in the system

$$\left. \frac{\partial \left(n_{\rm cl} m \right)}{\partial t} \right|_{\rm res} = \underline{\varepsilon_{\rm res}} \, \dot{\rho}_{\rm total, disp} \, \delta(m - \underline{m_{\rm min}})$$


Resurrecting factor (0.01-1)

The rate to generate new generation minimum-mass GMCs out of the total dispersed gas.

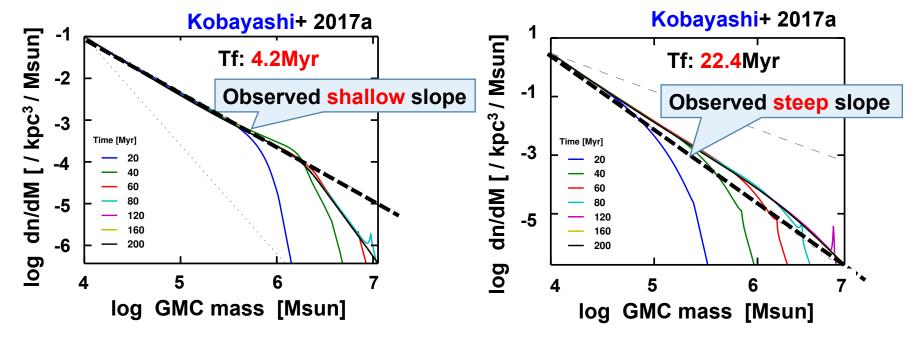
N.B.: In a steady state, $1-\varepsilon_{\rm res}$ can be understood as a rate to accrete onto pre-existing GMCs out of the total dispersed gas.


Self-growth Timescale T_f

Maximum GMC created in the bubble paradigm:

If swept up up to 100pc and pile them up into one gigantic cloud...

$$T_{
m f}(m) = T_{
m f,fid} \left(1 + rac{m}{m_{
m trunc}}
ight)^{\gamma}$$
 $T_{
m f,fid}$ = 10 Myr $\gamma = 10$ $m_{
m trunc} = 7.7 imes 10^6 M_{\odot}$


Results

- √ Slope of GMC MF
- √ Gas Resurrection

Steady State with different Tf

CCC affects only the massive-end evolution...

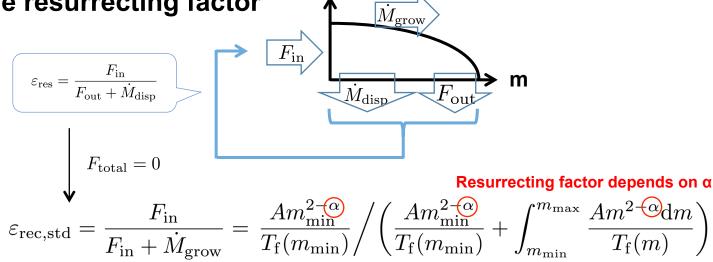
$$\frac{\partial n_{\rm cl}}{\partial t} + \frac{\partial}{\partial m} \left(n_{\rm cl} \frac{m}{T_{\rm f}} \right) = -\frac{n_{\rm cl}}{T_{\rm d}} \quad \Longrightarrow \quad n_{\rm cl}(m) = n_0 \left(\frac{m}{M_{\odot}} \right)^{-1 - \frac{T_{\rm f}}{T_{\rm d}}}$$

Arm regions: short Tf due to many massive stars/supernovae. Large surveys may put unique constraints on GMC formation/dispersal timescales on galactic scales by measuring slopes.

Optimal Steady State Resurrection

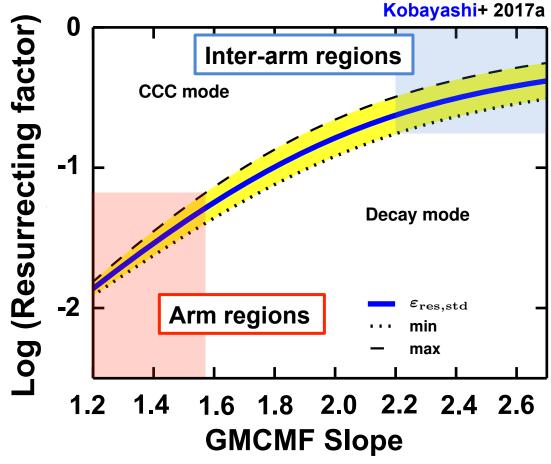
Coagulation equation for mass evolution

$$\frac{\partial mn}{\partial t} + \frac{\partial}{\partial m} \left(\frac{m^2n}{T_{\rm f}(m)} - \int_{m_{\rm min}}^m \frac{mn{\rm d}m}{T_{\rm f}(m)} + \int_{m_{\rm min}}^m \frac{nm{\rm d}m}{T_{\rm d}} \right) = 0$$


$$\text{Net mass flux} \qquad \text{(in case of } n_{\rm cl}(m) = Am^{-\alpha} \text{)}$$

$$F_{\rm total} = \frac{m_{\rm max}^2 n(m_{\rm max})}{T_{\rm f}(m_{\rm max})} - \frac{m_{\rm min}^2 n(m_{\rm min})}{T_{\rm f}(m_{\rm min})} - \int_{m_{\rm min}}^{m_{\rm max}} \frac{mn{\rm d}m}{T_{\rm f}(m)} + \int_{m_{\rm min}}^{m_{\rm max}} \frac{mn{\rm d}m}{T_{\rm d}}$$

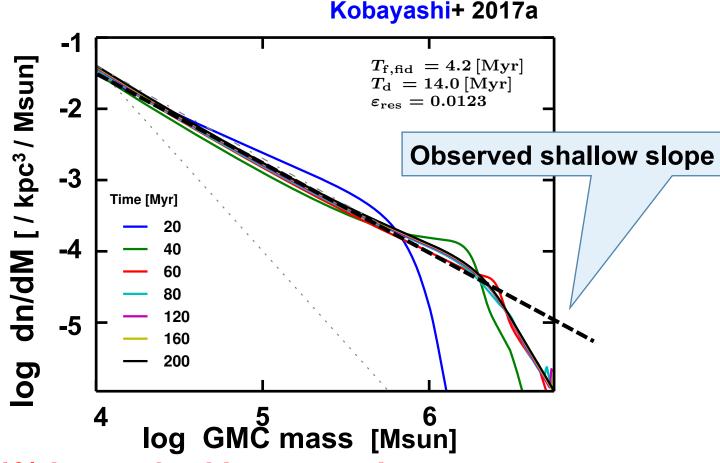
$$= \frac{Am_{\rm max}^{2-\alpha}}{T_{\rm f}(m_{\rm max})} \left[-\frac{Am_{\rm min}^{2-\alpha}}{T_{\rm f}(m_{\rm min})} \right] \cdot \left[-\frac{M_{\rm max}}{M_{\rm min}} \frac{Am^{1-\alpha}{\rm d}m}{T_{\rm f}(m)} \right] + \int_{m_{\rm min}}^{m_{\rm max}} \frac{Am^{1-\alpha}{\rm d}m}{T_{\rm d}} \quad \text{Outgoing flux Incoming flux}$$


$$= F_{\rm out} - F_{\rm in} - \dot{M}_{\rm grow} + \dot{M}_{\rm disp}$$

Define the resurrecting factor

Optimal Steady State Resurrection

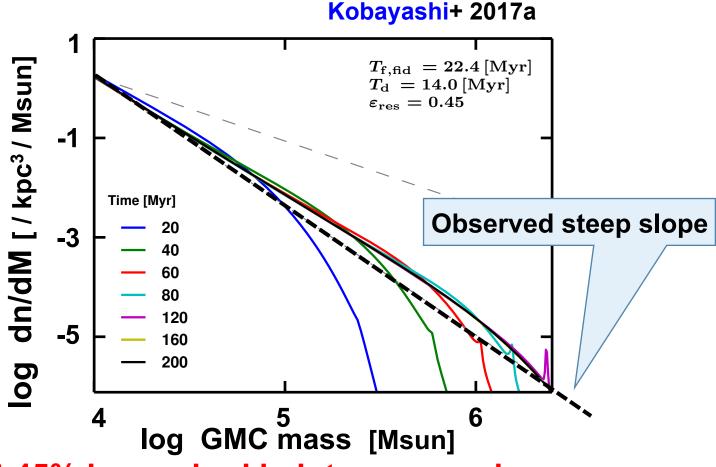
Relation between resurrection and GMCMF slope



Resurrecting factor: Arm ~ 1%, inter-arm ~30%

Resurrection in arm regions

Little resurrection (~1%)



Only 1% is required in arm regions (because abundant massive GMCs capture dispersed gas).

Resurrection in inter-arm regions

Substantial resurrection (~45%)

About 45% is required in inter-arm regions (lack of massive GMCs let dispersed gas easily resurrect).

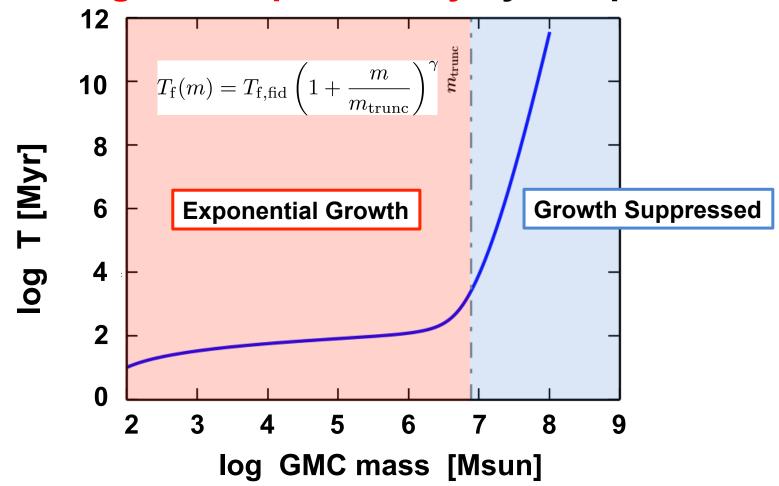
Resurrection in inter-arm regions

Substantial resurrection (~45%)

N.B.

(We suggest what resurrecting factor properly reproduces observations.)

Resurrecting processes of optically thick HI and CO-dark H2 should be confirmed/understood in the context of physics by massive simulations.



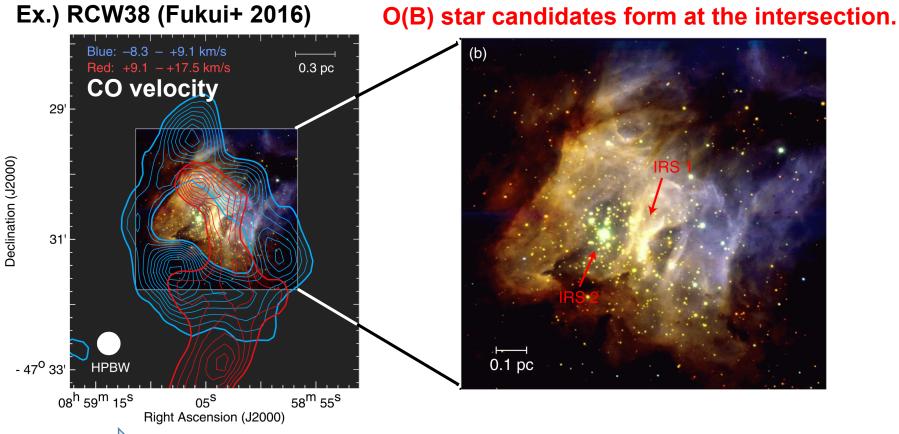
About 45% is required in inter-arm regions (lack of massive GMCs let dispersed gas easily resurrect).

log GMC mass [Msun]

Exponential self-growth

GMC mass grows exponentially by compression

Massive GMCs are long-lived;

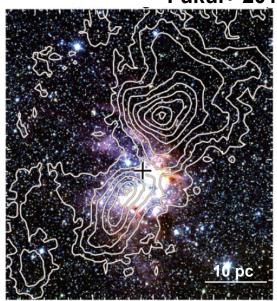

Typical "Age" and typical "Lifetime" is different!

CCC-driven Star Formation

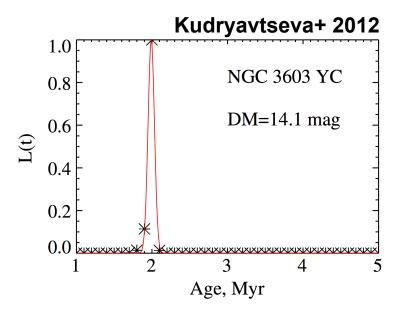
- ✓ Rapid Massive Star Formation
- ✓ Star Formation Rate
- √ Collision Frequency

Star Formation at CCC sites

O(B) stars and YSOs are often observed.


- 1) Complementary distribution on the sky and
- 2) bridging feature in CO position-velocity diagram indicate a recent CCC event ~0.1 Myr ago.

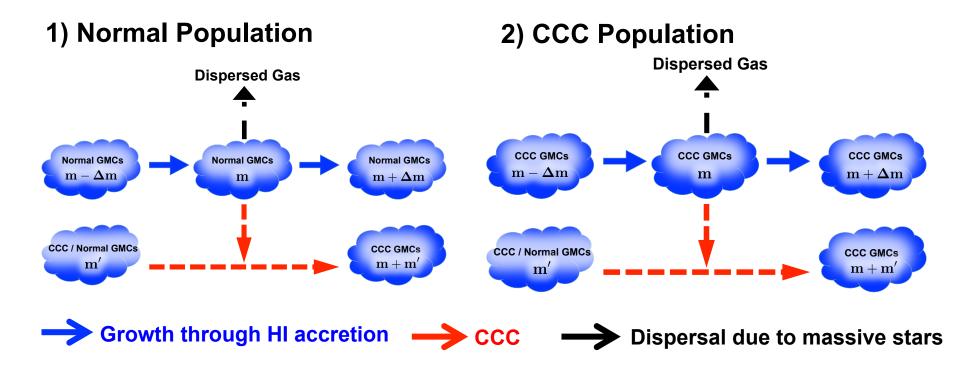
Star Formation at CCC sites


O(B) star formation possibly triggered by CCC.

Ex.) NGC3603

12CO contour + JHK image Fukui+ 2014

Probability of stellar ages (with assumed isochrones).



Multiple O stars might form ~0.5pc scale within 1Myr!

Similar trends observed in different sites (Westerlund2, W51, M17, NGC6334, NGC6357, M16, W33, M42, RCW166, S116, S117, S118, M43, RCW36, M20, RCW120, NGC2024, RCW34, ... etc.)

Two GMC Populations

Short Td for GMCs undergoing CCC

- ✓ GMCs join the CCC population once they experience CCC.
- ✓ CCC population has a short Td ~ 5Myr representing observed rapid massive-star formation.

Two GMC Populations

Time evolution equation and star formation rate (SFR)

n_{col}: CCC population

$$T_d = 14 Myr$$

$$T_{d,col} = 5Myr$$

$$\frac{\partial \left(n_{\text{acc,cl}} + n_{\text{col,cl}}\right)}{\partial t} + \frac{\partial}{\partial m} \left(\left(n_{\text{acc,cl}} + n_{\text{col,cl}}\right) \frac{m}{T_{\text{f}}}\right)$$

$$= -\frac{n_{\text{acc,cl}}}{T_{\text{d}}} - \frac{n_{\text{col,cl}}}{T_{\text{d,col}}}$$

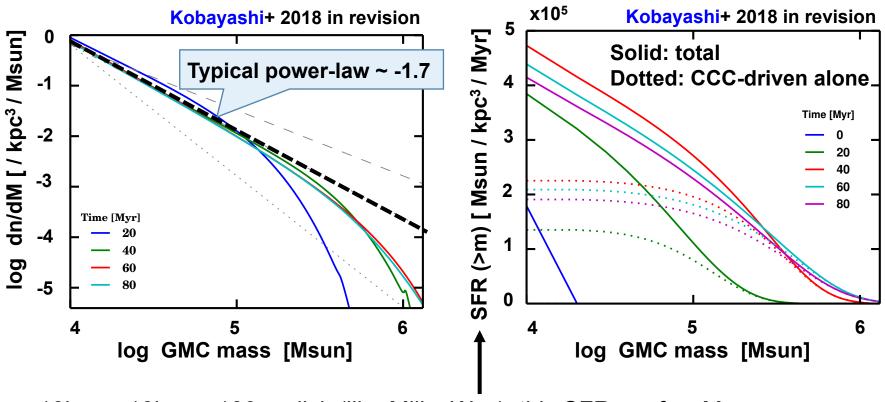
$$+ \frac{1}{2} \int_{0}^{\infty} \int_{0}^{\infty} K(m_{1}, m_{2})$$

$$\times \left(n_{\text{acc,cl,1}} + n_{\text{col,cl,1}}\right) \left(n_{\text{acc,cl,2}} + n_{\text{col,cl,2}}\right)$$

$$\times \delta(m - m_{1} - m_{2}) dm_{1} dm_{2}$$

$$- \int_{0}^{\infty} K(m, m_{2})$$

$$\times \left(n_{\text{acc,cl}} + n_{\text{col,cl,cl,2}}\right) \left(n_{\text{col,cl,2}} + n_{\text{col,cl,2}}\right) dm_{2}$$


$$+ \frac{1}{m} \frac{\partial \left(n_{\text{cl}} m\right)}{\partial t} \right| .$$

$$\mathbf{\epsilon}_{\mathsf{SFE}} = \mathbf{1\%} \qquad \qquad \mathsf{SFR}(>m) = \varepsilon_{\mathsf{SFE}} \times \left(\int_{m}^{\infty} \frac{m n_{\mathsf{acc},\mathsf{cl}}}{T_{\mathsf{d}}} \mathrm{d}m + \int_{m}^{\infty} \frac{m n_{\mathsf{col},\mathsf{cl}}}{T_{\mathsf{d},\mathsf{col}}} \mathrm{d}m \right)$$

CCC-driven star formation

Two GMC Populations

GMCMF and CCC-driven star formation rate

10kpc x 10kpc x 100pc disk (like Milky Way), this SFR = a few Msun per year.

CCC-driven star formation may amount to a few 10 percent of the total star formation in the Milky Way and nearby galaxies, which is mostly driven by GMCs > 10⁵ Msun.

Which GMC mass is important?

e-folding timescales for GMCs of mass m

(with pure coagulation assumed)

Growth terms from the evolution equation

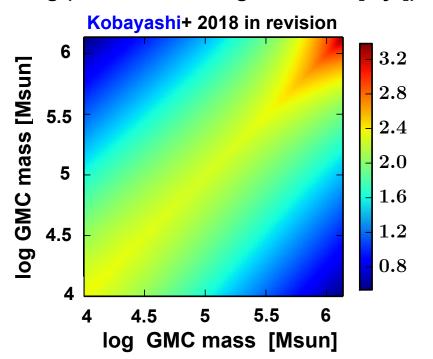
$$\frac{\partial n_{\rm cl}}{\partial t} = -\int K(m,m_2) n_{\rm cl} n_{\rm cl,2} \, {\rm d} m_2 = -\int \underbrace{K(m,m_2) n_{\rm cl} n_{\rm cl,2} m_2}_{\text{Number change by collision with population of mass } m_2 \text{ with a bin width of e x } m_2.$$

1) "Number" e-folding timescale due to collision with GMCs with mass m₂ alone.

$$T_{\text{col,num}} = \frac{n_{\text{cl}}}{K(m, m_2) n_{\text{cl}} n_{\text{cl},2} m_2}$$

2) "Mass" e-folding timescale due to collision with GMCs with mass m₂ alone.

$$T_{\rm col,mass} = \frac{n_{\rm cl} m}{(K(m, m_2) n_{\rm cl} n_{\rm cl,2} m_2) m_2}$$


Note: Number e-folding timescale can be intuitively/easily understood, but it does not necessarily mean how fast GMCs can move in the GMC mass-coordinate! (Indeed, that is what mass e-folding timescale tells you.)

Which GMC mass is important?

e-folding timescales for GMCs of mass m

(with pure coagulation assumed)

log (Number e-folding timescale [Myr])

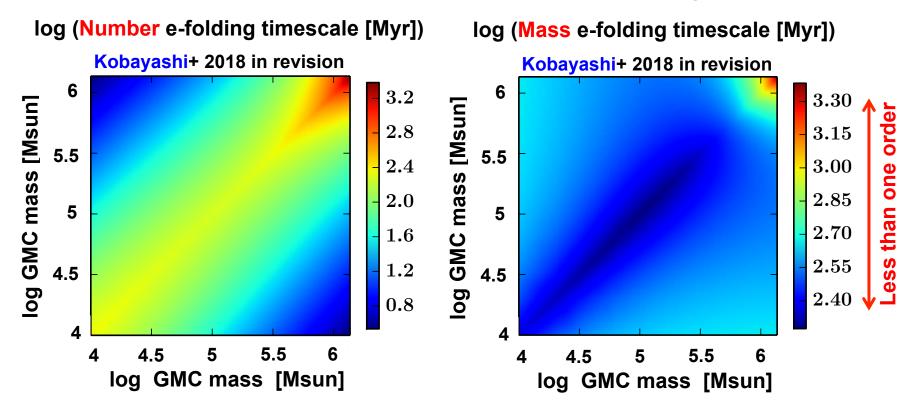
$$n_{\rm cl}(m) = Am^{-\alpha}$$
 (now - α = -1.7)

$$T_{\rm col,num} \propto \frac{1}{mm_2^{1-\alpha}} \left(\text{for } m \gg m_2 \right)$$

i.e., Smaller cloud population outnumbers larger one.

$$T_{\rm col,num} \propto \frac{1}{m_2^{2-\alpha}} \left(\text{for } m \ll m_2 \right)$$

i.e., Larger clouds have larger surface area.


Clouds are often bombarded by smaller clouds

(smaller cloud population outnumbers, and larger clouds have larger surface area.)

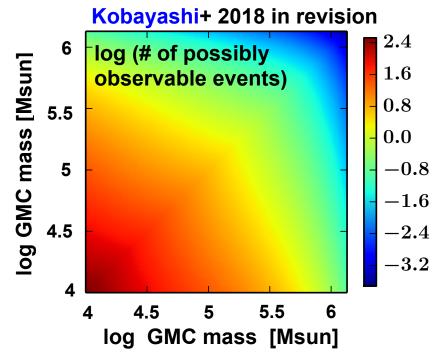
Which GMC mass is important?

e-folding timescales for GMCs of mass m

(with pure coagulation assumed)

GMCMF growth due to CCC is still dominated by small-large GMC collision, but equal-mass CCC also contributes to GMC mass-growth!

Which mass pair can we observe?

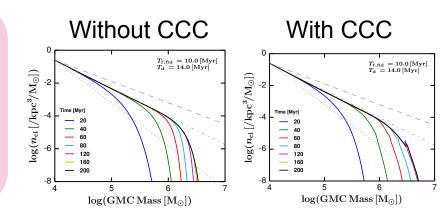

Observability

$$N_{\text{obs}}(m, m_2) = \int \frac{\int_m^{m+\delta m} n_{\text{cl}} dm}{T_{\text{col,num}}(m, m_2)} \Delta T_{\text{CCC}} dV_{\text{survey}}$$

$$\Delta T_{\rm CCC}$$
 : Duration over which CCC can be identified as CCC

$$V_{
m survey} = \int {
m d}V_{
m survey}$$
: Survey volume

Let us optimistically assume $\Delta T_{\rm CCC}$ = 1Myr, and survey the entire MW disk.


Mof the CCC pairs that current observations can probe must consist of GMCs ~10⁴ Msun; it is desired to push observations further to pairs of >10⁵ Msun, which are important for galactic star formation!

Summary

- ✓ Backgrounds: Multiple Episodes of Compression
 - Variation of GMC MF on galactic scales
 - Magnetic fields retard molecular cloud formation
- √ Formulation: Coagulation Equation with CCC
 - GMC MF slope is characterized by Tf/Td whereas its massive end is governed by CCC
 - CCC-driven SF may amount to a few 10 per cent of total SF in the Milky Way galaxy.

✓ Future Prospects:

- The column density of star formation rate (SFR)
- Transition from arm regions to inter-arm regions

