Reference Matsumoto+ 17 ApJ

0.20

0.15

(به م[.] (لا 0.10

磁場と乱流を考慮した分子雲コアから 原始星・星周円盤・アウトフローの形成 Tomoaki Matsumoto (Hosei univ) Masahiro Machida (Kyushu univ), Shu-ichiro, Inutsuka (Nagoya univ)

MHD turbulent simulation

Out of the second se

Turbulence and magnetic field in SF

- Strong turbulence in ISM.
 Size-linewidth relation (e.g., Larson 81)
- Strong magnetic field in ISM
 Mass-to-flux ratio is roughly critical value.

Size-linewidth relation

Strong magnetic field Supercritical vs subcritical

Model

- Initial condition
 - Critical Bonner-Ebert sphere + uniform envelope
 - Critical BE x 2 to be unstable against gravitational collapse
 - Turbulence
 - Uniform turbulence with scaling law of Larson (1981)
 - Mean Mach number
 - Magnetic field
 - Uniform B_z
 - The strength (B_z/B_{cr}) $\alpha = \frac{B_z}{B_{cr}}$
 - Model parameters \mathcal{M}, α
 - Turbulence (Mach 0.5, Mach 1), B-field (25µG, 64µG)

 $\mu = 2.81, 1.12$

 $R_c = 0.06 \text{ pc}$

- Assumption
 - Barotropic EOS:
 - Ohmic dissipation:
 - Sink particle:
 - Periodic boudary condition

$$P(\rho) = c_s^2 + \kappa \rho^{7/5}, \quad n_{\rm cr} = 2.62 \times 10^{10} {\rm cm}^{-3}$$
$$Re_m < 1 \text{ for } n > 2 \times 10^{12} {\rm cm}^{-3}$$

 $\mathcal{M} = \frac{1}{c_e V} \int_V |\boldsymbol{v}| dV$

$$n_{\rm sink} = 2.62 \times 10^{13} {\rm cm}^{-3}$$

On the cloud core scale 1000 yr after the protostar formation

Envelope(green), disk(yellow), outflow(blue)

On cloud core scale

Initial condition (velocity dispersion)

Model

Strong magnetic field μ = 1.12 Moderate Mach number M = 1

Initial condition (centroid velocity)

Model

Strong magnetic field μ = 1.12 Moderate Mach number M = 1

Color : density weighted velocity along los Contour: column density Arrows: magnetic field (normalized)

1000 years after protostar formation

1000 years after protostar formation on cloud core scale

Weak field case $\mu = 2.81$

Broad linewidth

Narrow linewidth

Weak field case μ = 2.81 on cloud core scale

Broad linewidth

Narrow linewidth

Centroid velocity

On envelope scale

On envelope scale

Complex structure at the center of cloud core

Tokuda+ 16 MC27 in Taurus 12CO(J=3-2) H13CO+(J=3-2)

Class 0 protostar

Hull+ 17 Ser-emb 8 Dust emission (stokes I) B-vector

Class 0 protostar

Internal, external, or inherited origin?

Summary

- Linewidth depends on direction of magnetic fields on star forming core scale.
 - Large Δv $\,$ and disturbed vlos for LOS// B $\,$
 - Narrow Δv and smooth vlos for LOS \perp B
- Envelopes exhibit complex features
 - by turbulence, magnetic field, infall, outflow.
 - Simulations show smoother structure than observations do.
 - Open question
- Many realizations are necessary for statistical analysis.
 Many models with low resolution are enough.