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INTRODUCTION




Star formation is important
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S Massive stars have important roles.
-> How do massive stars form?



Cloud-Cloud Collision (CCC) scenario

(Habe+Ohta 1992, Klein+Woods 1998, Anathpindika 2010,
Inoue+Fukui 2013, Takahira+ 2014, Balfour+ 2015, Wu+ 2015,1016)
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Gas is compressed at the collision interface.
Massive cores will form.



Previous simulations

(Takahira+ 2014)
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Motivation

collision

massive star formation
-> What happens to the cloud next?

Massive stars emit larger quantities of UV photons.
The energy will change the physical state of the cloud.
-> (Next) star formation is affected.



Star formation and feedback

giant molecular cloud (GMC)

Star formation is controlled
by the GMC'’s state

- self-gravity

- turbulence

- (magnetic fields)

and feedback
from other massive stars.
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N - massive stars emit large energy



Photoionisation feedback
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HIl regions expand by high pressure.



Photoionisation feedback

(test simulation)

density slice plot

Questions:
star formation?
or
surpress star formation?
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NUMERICAL MODEL & METHODS




GMC model

GMC

dense core

~100 pc

18
(107 m) The dynamic range is very large.



simulation code

Enzo; a 3D AMR code

(Adaptive Mesh Refinement) .
(Bryan et al. 2014)

Hydrodynamics is calculated
on the meshes.

Meshes are added adaptively
over regions that require
higher resolutions.

(Enzo Workshop)



Star formation model

GMC

dense core

~100 pcC

(1078 m) It is hard to resolve Individual stars.
-> sink particle model.



Sink particle model

sink formation conditions
N ‘ 1 (Federrath et al. 2010)
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Feedback model

GMC

dense core .
sinks

)¢

UV radiation
from massive stars

Radiation is treated with ray-tracing method.



Adaptive ray tracing
(Wise & Abel 2011)

The radiative transfer equation ﬂ\“k‘“"

s solved along rays L\\\mu..
lonisation of hydrogen and the -“..
UV heating rate is calculated. .“‘..
Rays are split into child rays

when the solid angle is large ...
compared to the cell face area.

(Enzo Workshop)




Initial conditions

Surface density

M |solated cloud | 2 Colliding clouds
with 10, 20 km/s
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Box size: 90 pc
Maximum refinement level: 5
Resolution: 0.03 pcC



RESULTS




|solated cloud (NoFeedback)

Surface Density SFE v.s. Time
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Turbulence decays and the cloud begins to collapse.
The SFE reaches ~ 2% at 6 Myr.



Colliding cloud at 10 km/s (NoFeedback)

Surface Density SFE v.s. Time
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The colliding clouds begin star formation eatrlier.
The SFE reaches 12 % at 6 Myr.



Colliding cloud at 20 km/s (NoFeedback)

Surface Density SFE v.s. Time
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The faster collision produces stars more rapidly.
The SFE reaches 17 % at 6 Myr.



Probability Distribution Function (PDF) of density
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Gas is compressed by collision.



Collision effect on star formation

cumulative mass function
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Feedback effect on star formation (colliding cloud)

Surface Density SFE v.s. Time

Radiative (isolated)
NoFeedback (isolated)
Radiative (10 kms™1)
NoFeedback (10 km s ')
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The effect is positive in the colliding clouds.
The SFE reaches 23 % at 6 Myr.



Feedback effect on star formation (colliding cloud)

Surface Density SFE v.s. Time
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The effect is positive in the colliding clouds.
The SFE reaches 24 % at 6 Myr.



DISCUSSION




Why feedback is positive ?

Density slice HIl Density slice




Why feedback is positive ?

mass function
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less small sinks & more massive sinks
-> fragmentation is suppressed



CONCLUSIONS




We made numerical simulations to study star formation in colliding
cloud considering feedback.

The colliding clouds promote star formation efficiency by a factor of
10 higher than the isolated cloud.

The photoionising feedback increases the SFE in the colliding
clouds.

-> feedback is positive in colliding clouds!



