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Importance of investigating accretion processes
onto young stars

Accretion structure onto stars
» ang. mom. evolution of stars
» estimation of mass accretion rate
» occultation of the star
(—> iImpact on the disk evolution)

Angular momentum/mass extraction

=> <= from disks & stars

> Jet, outflow, wind

Understanding the roles of a magnetic field around
the star is crucial

Note: In this talk,
» << lau scale is focused
> |ate protostars ~ early pre-main seq. stars considered



Structure of the inner region?




Structure of the inner region?
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\Classical picture| » UV excess compared to the stellar emission
» Hot spots at high latitudes
Magnetospheric Accretion
accompanied by the accretion shock

quiet disk accretion

Mag. \ | }
field /jatm

e.g. Konigl 1991



Magnetospheric accretion is successful?

UV excess due to the shock heating
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Hartmann+1 6, see also Calvet & Gullbring 1998

» UV excess (Valenti+93), hot spots at high-latitudes (Donati+11)

» Indicating a fast accretion at high-latitudes _
» opt./UV excess — [fitting by the shock model] —> Estimation of M

Magnetospheric accretion scenario looks OK?




OCCUItation Of the Star Bouvier + 1999 and many

Changing stellar radiation to the disk: Important for the disk evolution

CoRoT white- Ilght flux
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Magnhetospheric accretion is successful?

Assume that
the inner disk is truncated at a radius
where Emag ~ Ekin
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(Ghosh & Lamb 1978, Konigl 1991) truncated
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Johns-Krull & Gafford 2002



Magnetospheric accretion even in weak B-field stars?

Herbig Ae/Be: intermediate mass stars at the PMS stage. The fraction
of magnetic (> ~100 G) stars is only ~10% (Wade+2007)
—> too weak B-field for magnetospheric acc.

“"IRed : CTTS Herbig Ae stars also have a
***fBlue: Herbig Ae/Be /. large accretion speed

I 500 (Cauley & Johns-Krull 14)
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Re-examine disk accretion process

Magnetospheric accretion Disk accretion

Existence of magnetosphere is unclear
—> Re-examine the disk accretion process
using 3D magnetohydrodynamic (MHD) simulations

>» |s fast accretion possible without the magnetosphere?
» Occultation process?
» Does a fast, magnetically-driven jet blow 7




Setting of 3D MHD simulation:
Accretion onto a star without a magnetosphere

Code : Athena++ (Stone, Tomida, White in prep)
Basic egs: ideal MHD (OK for this inner region)

Density
10.00

0.01000

- 1.000e-05

- 1.000e-08

hourglass-shape
initial mag. field
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» Domain size: 60 Rstar ~ 0.6 au

Physical time span: ~300 rot ~ 0.4 yr y
i N X Va ~.

- —
LLLLLLLLLLLLL Lossssssaslessanssnalossnsnssslossssnsas ' V v N\~ v




Model setting: Stellar surface & disk

Slowly rotating (r_corot = 3 Rstar)

.\\\\O/ f//, Stellar wind (thermally driven)

» Cold (thin) disk: Hp/R = 0.14

» Weakly magnetized: 8=10"4

/ \ > A simplified radiation cooling
/ \ IS adopted to maintain the

weakly magnetized Initial disk temperature profile

a damping layer method used:
The disturbed stellar surface reverts
to a certain coronal state gradually.



B-field and gas flow structures: large view

Vi /Vesc + field lines Vr/Vesc + Unit vel. vec.
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No magnetically-driven jets with v ~ v_esc from the MRI disk found
(consistent with previous simulations of disks with non-rotating BH, e.g. Beckwith+09)



B-field and gas flow structures: large view
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Gas map around the star

Density
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» Highly fluctuating/turbulent disk atmosphere
(source of turbulence: MagnhetoRotational Instability, MRI)




MRI-driven wind
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MRI turbulence

Suzuki & Inutsuka 2009, 2014
Fromang et al. 2013, Bai & Stone 2013

» The wind supplies a large amount
of mass to the upper atmosphere

> Slow (<< escape velocity)

> The wind Is expected to become
magnetically-driven outflows
(but unclear)

Suzuki & Inutsuka 2009



Gas map around the star

radial velocity
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Fast accretion at high-latitudes of the star
i occurs even without a stellar magnetosphere
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B-field and gas flow structures: centeral region

Vr/Vesc + field lines

8

Magnetic funnel

Outer region: wind is blowing outward (but slowly)
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Inner region: MRI-driven wind is flowing to the star
(“failed” wind) along the magnetic funnel

Funnel-wall accretion



3D structure of funnel-wall accretion
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» Patchy accretion streams flowing to high-latitudes
» Coexistence of the disk accretion and funnel-wall accretion



Maximum accretion speed

Plasma beta Blye: fast accretion flow
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Even without a magnetosphere,
accretion with a speed of vg ~ 0.7v. (>100 km/s) is possible
(observed soft X-ray emission can be produced at acc. shocks)




Accretion rate

Plasma beta Blye: fast accretion flow The disk opening angle: ~15

1000.
' 100.0 arrows: velocity vectors
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1.000 —— midplane (15° > |6|)
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Mass accretion rate
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Mid plane accretion Is dominant:
Rate of the funnel-wall acc. ~ 0.01-0.5 x rate of mid plane acc.



Accretion structure on the stellar surface (r=1)

1.0
N |
Many localized
00 accretion spots

Time = 281.7 Kepler rot. at »r = 1.0
90°
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Large kinetic energy
flux regions ~ hot spots
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Why funnel-wall accretion is so fast (~free-fall)?

Significant ang. mom. loss by the Lorentz force

Lorentz force/centrifugal force iso specific ang. mom. line
Uy / Vesc (centrifugal barrier)

t

0.0

I—O.Z

The deceleration by mag. torque becomes important when
FL,qb ~ Fcen
Lorentz force centrifugal force

101

So-called avalanche flow (Matsumoto+ 1996)
but It occurs well above the disk surface




Angular momentum exchange mechanism

Blue: =peareee  MRI-like ang. mom. exchange
fast accretion flow

\ AMRI ~ H

FL,qS ~ Fcen
B2 vy

> wH PR

This is confirmed in our sim.

Field line




Origin of funnel-wall accretion: Relation to the disk dynamo

Time = 0 Kepler rot. at R = 1 B¢ -dominant disk
= 0.0100
0.0075
0.0050 (
-0.0025
. ©| +0.0000
Parker instability
- -—0.0025
B-field
» Y| . —0.0050 /—\\
St ~0.0075 _
( gas slides down (o decreases)>
o | —
B6— 0.0100 move upward due to buoyancy

As for reversal of the sign of Bphi,
see e.g. Machida et al. 2013



Origin of funnel-wall accretion: Relation to the disk dynamo

Time = 286 Keplerrot. atR =1
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As for reversal of the sign of Bphi,

see e.g. Machida et al. 2013
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Rising magnetic field cannot penetrate
the magnetic funnel.

—> move along the funnel

—> supply B-field along the funnel



Movement of B-fields & accreting materials

Movement of magnetic fields Movement of accreting materials

Increase of Mag. Torque

Gas is slowed down
by torque,
falling onto the star

MRI-driven wind

B amplification

MRI-driven wind
—> Rapid ang. mom. loss
around the funnel
—> funnel-wall accretion

Disk dynamo
—> strong B above the disk

Note: B-field and materials move in the opposite direction (decoupled)



Why a fast jet does not blow?

Prediction (Kudoh & Shibata 1995, 1998):
magnetic Magnetically-driven jets can form
pressure even when the disk B-field is weak

RS U rosyit

No jet from a 3D weakly magnetized (8=10"4),
cold (Hp/R ~ 0.1, Eth << Eg) disk

Prediction
Amplify B-field =——» Emag ~ Eg—— Jet

(probably OK
for thick/hot disks)

Our result Emag ~ Eth << Eg —» Parker instability
(B ~1) Growth time ~ Amp. time

Note: Emag << Eg even well above the disk because
the density is enhanced by the MRI-driven wind



Parker instability
low-8 (dark purple) = strong B
Time = 260 Keplerrot. at R =1

i plasma B plasma B8 on Rz plane + 3D B-field
' buoyant loops
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Parker instability

plasma B on Rz plane + 3D B-field
buoyant loops
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Density
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Angular momentum transport
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Occultation due to dynamo

Time = 150 Keplerrot.at R =1
90°
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Comparison with magnetospheric acc. model

Our model

Magnetospheric
Accretion (MA) model g i
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MA model our model

Strong stellar B necesary? yes Nno
fast accretion? | yes yes

flow along field lines? | ves no
aperiodic accretion? not clear yes

occultation disk warp ~ dynamo



Summary

» Fast accretion at high-latitudes of the star (funnel-wall
accretion) is found to occur even without magnetosphere.

» Failed MRI-driven wind = Funnel-wall accretion
» Funnel-wall accretion is a result of a complex coupling

among the disk wind, dynamo, and ang. mom. transport.
(hot a local process!!)

» A fast jet does not blow from our cold, MRI-turbulent disk.



