原始惑星系円盤におけるダスト偏光と磁場

Grain alignment in protoplanetary disks

 Ryo TazakiAstronomical Institute，Tohoku University
Collaborators：A．Lazarian and H．Nomura

1．Introduction

2．Grain alignment in the ISM
3．Grain alignment in protoplanetary disks
4．Discussion ：Alignment efficiency
5．Summary

原始惑星系円盤におけるダスト偏光と磁場

Grain alignment in protoplanetary disks Ryo Tazaki
Astronomical Institute，Tohoku University Collaborators：A．Lazarian and H．Nomura

1．Introduntion

Take home message：
 Radiative torque alignment theory predicts that alignment axis is not necessary to be B－field！

5．Summary

Grain alignment and polarization

Lazarian（2007）

a

polarization E II B （absorption）

FIR／mm

$\mathrm{E} \perp \mathrm{B}$ polarization $\mathrm{E} \perp \mathrm{B}$ （emission）

Tracing tool of B－field structure

Andersson et al． 2015

Linear polarization of HL Tau by ALMA

 ＊E－vectors are shown！

alignment \cdots ？

HL Tau（ $\lambda=3.1 \mathrm{~mm}$ ）

Does grain alignment with B－field really happen？

Outline

Classical theory：Paramagnetic dissipation

Davis \＆Greenstein（1951），see also Spitzer（1978）

－Dissipation results in non－zero magnetic torque $(\mathrm{M} \times \mathrm{B})$ ，which acts to reduce the component of angular momentum perpendicular to B ．

＊assume angular momentum vector Il minor axis （so－called＂internal alignment＂）

－But，this alignment process takes place slowly．．．

$$
t_{\mathrm{DG}} \approx 1.5 \times 10^{6} \mathrm{yr}\left(\frac{a}{0.1 \mu \mathrm{~m}}\right)^{2} \gg \text { gas collision(damping) timescale }
$$

Fast alignment mechanism? \rightarrow radiative torque (RAT)

- Dolginov \& Mitrophanov (1976):

Spin-up of helical grains by left- and right-handed photons

- Draine \& Weingartner $(1996,1997)$

RAT is important! RATs from anisotropic radiation field result in rapid grain alignment with B-field even in the absence of the paramagnetic dissipation!
https://web.astro.princeton.edu/people/bruce-draine

- Lazarian \& Hoang (2007)

Overview of RAT alignment

Lazarian \＆Hoang 2007

Test of RAT alignment by observations

see e．g．，Andersson et al． 2015
－In the ISM，larger grains are better aligned．
－minimum aligned grain size：a～ $0.045 \mu \mathrm{~m}$（Kim \＆Martin 1995）
－In RAT alignment，small grains do not align．
－minimum aligned grain size ：$\sim \lambda($ rad field）／2（Lazarian \＆Hoang 2007）．
－short wavelength end of ISRF：$\lambda=912 \AA$（Lyman limit）

Outline

5．Summary

Grain alignment in PPDs（Previous works）

Cho \＆Lazarian（2007）

Based on the old RAT alignment theory

Bertrang＋（2016） MHD simulation
＋perfectly aligned grains

－In PPDs，radiation can be strong because of the presence of the central star．\rightarrow RAT alignment is expected！（Cho \＆Lazarian 2007）
－Too optimistic conditions for grain alignment with B－field are used in previous studies．
e．g．，grain precession is NOT included in Cho \＆Lazarian 07 model．

Grain alignment in PPDs（Our work） RT，Lazarian and Nomura（2017）

－We apply RAT alignment theory（Lazarian \＆Hoang 2007） to PPDs，and calculate the expected polarization map to be compared with ALMA．
－Radiative transfer calculation（RADMC－3D，Dullemond et al．2012） Central star ：T－Tauri star（4000K，2Rsun） Disk mass： 10^{-4} Msun

Estimate the magnitude of radiative torque at each location of the disk
－Strength of toroidal magnetic field（Okuzumi et al．2014）

$$
B(R)=10 \mu \mathrm{G}\left(\frac{R}{100 \mathrm{AU}}\right)^{-2}
$$

Can grains align with B－field in PPDs？

－Smaller grains do not align due to inefficient RAT．
－At r＝50 au and midplane， grain size $>20 \mu \mathrm{~m}$ can align．

－For such grain sizes，Larmor precession is suppressed by the gaseous damping．

Grain alignment
with B－field
hardly occur！

RAT alignment in the absence of B－field

Lazarian \＆Hoang 2007
－RAT alignment with $\mathrm{B} \rightarrow 0$

Shape 1

－No Larmor precession＝No B－field alignment
－RAT induces precession about radiative flux． \rightarrow alignment with respect to radiative flux happens．

Alignment with radiation direction

－RAT induce precession around radiation direction． （Lazarian \＆Hoang 2007）
－For grains＞ $20 \mu \mathrm{~m}$ ，
rad．precession is faster than Larmor precession and gaseous damping timescales． \rightarrow＂radiation alignment＂

Initial state

Final state
radiative flux II minor axis

Millimeter wave polarization of disks

Our study
（Based on the alignment theory）

－Alignment theory predicts alignment with radiation direction happens，which results in azimuthal pol．vectors．
－Polarization vectors at（sub－）mm wavelengths do not trace the magnetic field structure in PPDs！

Millimeter wave polarization of disks

Previous study
（assumed B－field alignment）

Our study

（Based on the alignment theory）

Short summary：Why is B－field alignment so inefficient？
－Alined grain size $\sim \lambda($ rad．field）／2＠disk midplane
\sim a few tens of micron（＞＞ISM dust $\sim 0.1 \mu \mathrm{~m}$ ）
－Larger grains show slower Larmor precession，and then the Larmor precession is suppressed by gaseous collisions．

In MIR, we may observe magnetically aligned grains!

λ [$\mu \mathrm{m}$]
Larmor precession timescale

$$
t_{\mathrm{L}} \approx 1.3 \text { year }\left(\frac{a}{0.1 \mu \mathrm{~m}}\right)^{2}\left(\frac{B}{5 \mu \mathrm{G}}\right)^{-1}\left(\frac{\chi(0)}{10^{-4}}\right)^{-1}
$$

grain size being aligned $\sim \lambda($ rad field $) / 2$
When does B-field alignment happen?

- Fast Larmor precession for grains being aligned.
- Less gaseous damping (low density) Disk surface layer is favorable for B-field alignment!

We can expect toroidal B-field alignment in MIR wavelength!

mm－wave polarization of PPDs

Alignment with magnetic field

Alignment with radiation direction

ALMA
（Band 3，$\lambda=3.1 \mathrm{~mm}$ ）

－HL Tau in Band 3 shows azimuthal polarization vectors．
－seems to be consistent with grain alignment with radiative flux．

MIR polarization observations

Cho \＆Lazarian 2007

Li et al． 2017

－MIR polarization obs．traces toroidal B－field of surface layer of PPDs？

Outline

Coupling of J and minor axis

－Rotational kinetic energy
$E(\theta)=\frac{J^{2}}{I_{\|}}\left(1+\sin ^{2} \theta(h-1)\right)$,
－（Internal）Energy dissipation leads to $\theta \rightarrow 0$（＂Internal alignment＂） minor axis

Hoang \＆Lazarian 2009

－Larger grains do not show internal alignment．
－Without internal alignment（Hoang \＆Lazarian 2009）：
－alignment efficiency：～10\％＠High－J attractor（spin－up state）
～100\％＠Low－J attractor（spin－down state）

Alignment efficiency ：High－J or Low－J？

Lazarian \＆Hoang 2007

－For grain alignment with rad．direction，we should see $\psi=0$ ．
－Above condition depends on the amount of magnetic inclusions， such as superparamagnetic inclusions（Lazarian \＆Hoang 2008，Hoang \＆Lazarian 2016）．

Example：RAT alignment calculation

Hoang \＆Lazarian 2008

－Most grains evolve into Low－J attractor ．．．
\rightarrow alignment efficiency of $\sim 20 \%$

Toward the higher alignment efficiency．．．

Hoang \＆Lazarian 2016，（see also Hoang \＆Lazarian 2008）
Low－J attractor \rightarrow High－J attractor

－If high－J attractors are present，the stochastic perturbation，such as gas bombardment，brings the grains at Low－J attractors to high－J attractor！\rightarrow almost perfect alignment occurs！

Outline

1．Introduction

2．Grain alignment in the ISM
 3．Grain alignment in protoplanetary disks 4．Discussion ：Alignment efficiency

5．Summary

Summary

－Now ALMA starts to observe linear polarization of protoplanetary disks in（sub－）mm－wavelengths．
－In disks，dust grains in midplane do not align with B－field．
－Mainly because large grains show slow Larmor precession．
\rightarrow ALMA observations may not provide B－field structure of PPDs．
－RAT alignment theory predicts that large grains in the disk midplane may align with radiation direction instead of B－field．
－Magnetically aligned grains can present at surface layer of the disks，which can be verified by the MIR polarimetric obs．

