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Abstract

Magnetic reconnection is widely believed to play an important role in magnetospheric

substorms and solar flares as a fast conversion process of the magnetic energy to plasma

kinetic energy. However, it has been difficult to describe its large-scale dynamics by

using kinetic simulations due to limited computer resources. The main unresolved issues

in the reconnection processes include the onset mechanism, the reconnection rate in the

steady state, and the energy transport mechanism. The difficulty in approaching such

issues lies in the fact that macro-scale structures can be strongly affected by localized

micro-scale processes, in which the kinetic treatment of plasma is required.

In order to overcome this difficulty, we first develop a new 2-1/2 dimensional elec-

tromagnetic particle code that employs adaptive mesh refinement (AMR) technique and

a particle splitting algorithm. The AMR technique subdivides and removes cells dy-

namically in accordance with a refinement criterion and enhances the spacial resolution

locally. On the other hand, the particle splitting algorithm divides finite-size superparti-

cles locating in fine cells, controling the number of particles per cell in order to suppress

numerical noise arising when the number of particles per cell gets too small. We perform

some test simulations and compare three runs without the AMR, with the AMR, and

with both the AMR and the particle splitting. These results indicate not only that the

AMR and particle splitting algorithms are successfully applied to the conventional parti-

cle codes, but also that they are quite effective to achieve high-resolution simulations on

the evolution of the current sheet associated with magnetic reconnection. Thus the new

code allows us to implement a large-scale kinetic simulation of magnetic reconnection.

One of our goals by conducting large-scale simulations is to investigate a long time

evolution of the diffusion region and to see what supports fast reconnection in a fully

kinetic system. Our results show that fast reconnection is quickly achieved through the

Hall effects but the system does not reach steady state and the reconnection rate de-

creases significantly. The key process responsible for slowing the reconnection processes

is the extension of the electron diffusion region in association with the enhancement of

the polarization electric field directing toward the neutral sheet in the electron inflow

region. The polarization electric field is caused by the inertia difference between ions and

electrons, and enhanced by the meandering motions of the background ions. The inflow

electrons are forced by the polarization field to move toward the out-of-plane direction

by the E ×B drift and enhances the out-of-plane current density in the electron inflow

region. Since the current density is imposed uniformly along the upstream edge of the
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electron diffusion region, the magnetic field lines become mostly parallel to the x direc-

tion near the X-line. As a result, the electron meandering region so the electron diffusion

region extends along the x direction. In order to confirm the role of the polarization elec-

tric field, we compare the simulation results with mi/me = 1 and 100. It is found that

(1) a steady-state reconnection is achieved in the system where the polarization electric

field does not arise, (2) a large reconnection rate is obtained even in the system without

the Hall effects. It is suggested that the anomalous resistivity due to the Buneman-type

instability might be required to support a steady-state fast reconnection.

Another goal is to reveal energy transport processes associated with magnetic recon-

nection, that is, where and how plasma is accelerated and heated. In the present study,

we pay attention to an electron heating mechanism in the plasma sheet-lobe boundary

region, where the truncated (i.e., flat-topped) distribution function of electrons is often

observed in the Earth magnetotail during magnetic reconnection. It is found that the

electron two-stream instability between the background cold electrons and the strong

beam electrons with high perpendicular temperature should be responsible for the for-

mation of the flat-topped electrons. Electrons are trapped by the electrostatic potential

wells resulting from the electron two-stream instability and scattered along the ambi-

ent magnetic field, so that the truncated distribution function is formed in the parallel

direction. We show that the electron heating through this process occurs in the ex-

tensive region of the boundary region and the heating level is consistent with satellite

observations. The strong beam electrons consist of two components originating from

distinct regions. Some electrons come from the opposite boundary region of the plasma

sheet along the magnetic field line, forming the cold component of the electron beam.

The others are originating from the lobe region, passing through the electron diffusion

region. Furthermore, we demonstrate that the Electrostatic Solitary Waves (ESW) can

be evolved from the electron two-stream instability in association with magnetic recon-

nection. Such waves should be observed in the boundary region during reconnection.
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CHAPTER 1

General Introduction

Magnetic reconnection is known as a fast conversion process of magnetic energy

into plasma kinetic energy and believed to be a phenomenon of considerable importance

in space physics and astrophysics. In this part, we briefly review theoretical and ob-

servational studies devoted toward understanding the physical mechanism of magnetic

reconnection. In section 1.1, we describe why it is considered to be so important in the

solar system, especially in the Earth magnetosphere, followed by discussions on mag-

netic reconnection proper. In sections 1.2 and 1.3, some important models explaining

fast energy release due to magnetic reconnection are described. We then summarize the

main problems that remain and motivate this study.

1.1 Role of Magnetic Reconnection in Solar System

We first introduce the principal physics of magnetic reconnection and explain why it

is such an important process in the solar system, where the particles are highly ionized

and form a plasma state.

We consider a plasma obeying a simple Ohm’s law of the form

E + V × B = ηeffJ . (1.1)

The left-hand side of (1.1) represents the electric field in the rest frame of the plasma

flowing with velocity V in the magnetic field B, while the right-hand side is an Ohmic

current term proportional to effective scalar resistivity ηeff . The parameter ηeff is

expressed by using either inter-particle or wave-particle collision frequencies as

ηeff =
mνeff

ne2
, (1.2)

where m and n are the mass and the number density of the plasma, and νeff is the

effective collision frequency. Solving (1.1) with respect to E and substituting it into
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Faraday’s law, and then using Ampère’s law neglecting the displacement current, one

can derive the induction equation which determines how B developes in time

∂B

∂t
= ∇× (V × B) +

ηeff

µ0
∇2B. (1.3)

The first term describes convection of the magnetic field lines with the plasma flow, while

the second term represents diffusion of the magnetic field through the plasma such as to

reduce the gradients. If the first term dominates so that the second term is negligible,

the plasma is “fozen-in” to the magnetic field such that a fluid elements which is initially

located on a field line remain on the same field line forever. On the other hand, if the

second term dominates the first term, the equation (1.3) becomes a diffusion equation

and there is no coupling between the magnetic field and the plasma flow.

The relative importance of the two terms on the right-hand side of (1.3) is conve-

niently compared with the magnetic Reynolds number

Rm =
µ0UL

ηeff
≈ |∇ × (V × B)|

|ηeff/µ0∇2B| , (1.4)

where U is a characteristic flow speed and L is a characteristic length of the system. If Rm

is large, convection dominates and frozen-in flow prevails, while if Rm is small, diffusion

dominates and the coupling to the plasma flow is weak. If we consider a global structure

of the Earth magnetosphere, L is the order of a few Earth radii (Re) (the scale size of the

magnetospheric cavity) and U is estimated as 100 km/s (a typical magnetospheric flow

speed), which leads to Rm � 1011. In the solar flares, on the other hand, L ∼ 104 km (the

size of a flare system) and U ∼ 102 m/s (a typical outflow speed) result in Rm ∼ 108. In

both cases, the values of Rm are so large that on these scale sizes the field convection is

overwhelmingly dominant and that the effect of magnetic diffusion is entirely negligible.

Thus it seems that the diffusive process in the magnetosphere and the solar flares is

negligible in considering their global structures.

In such a limit neglecting the diffusion term in (1.3), the behavior of plasma is strongly

constrained in such a way that the particles always remain tied to the same magnetic

field line as it convects with the plasma flow, and cross-field mixing of plasma elements

is suppressed. Therefore when two initially separate plasma regimes come into contact

with each other, one can expect that these two plasmas do not mix, instead a thin

boundary layer should be formed between them separating two plasma populations and

magnetic fields. Generally the boundary layer constitute a current sheet, since the fields

on either side of the boundary will have different strengths and orientations tangential to

the boundary. Actually, a plasma flow that is frozen-in to the magnetic field is generated

on the solar surface and prevails in the solar system. The existence of so-called solar
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wind, which carries magnetized plasma, was speculated by Alfvén (1957) and predicted

theoretically by Parker (1958). Since the Earth magnetic field contacts with the solar

wind, there indeed exists a boundary layer between them called magnetopause and it

forms a current sheet (Chapman and Ferraro, 1931). Also in the Earth magnetotail

and the solar flares, current sheets are formed between the anti-parallel magnetic fields

and divide the two regions. Thus the perfect conductive approximation of plasma flows

in the magnetic field results in thin current sheets separating distinct plasma regimes.

The important is that it is not guaranteed that the effect of diffusion can be neglected in

discussing the physics of these boundaries, even though it may be negligible in describing

the large-scale behavior within each plasma regime. Therefore we next consider the

effects of diffusion in these boundary layers.

For simplicity, we assume a boundary on which equal and opposite fields of strength

B0 contact with each other separated by a magnetic neutral sheet. The magnetic field

lines in either side are along x axis so that Bx = ±B0 for z ≷ 0. Then a current flowing

along y axis is generated. Plasmas in either side of the boundary layer flow toward

the neutral sheet with speed V , but the flow is negligible in the boundary layer such

that (1.3) reduces to a diffusion equation. Now we set the half width of the equilibrium

current sheet as λ. The plasma inflows are generated by the E×B drifts of the particles

so that V � Ey/B0. For steady state system, Faraday’s law (∇× E = 0) requires that

the electric field Ey should be spatially uniform. Thus the electric field imposed outside

the current sheet

Ey � V B0

can be equated by that in the current sheet where magnetic diffusion is dominant (i.e.,

the diffusion region)

Ey � ηeffJy. (1.5)

Using Ampère’s law (Jy � B0/µ0λ), we obtain

Rm =
µ0V λ

ηeff
� 1, (1.6)

so that the width of the current sheet is sufficiently small and the diffusion becomes

important.

In a practical sense, the effective topology of the magnetic field lines is described

in Figure 1.1 during a steady magnetic reconnection. The magnetic field lines in either

side of the boundary layer convect toward the boundary with the plasma flows, then

they are reconnected to a field line convecting from the opposite side of the boundary
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Figure 1.1: Magnetic field lines (light blue lines) and flow vectors (red arrows) around
the neutral line during a steady-state magnetic reconnection. Hatched area represents
the diffusion region where magnetic diffusion dominates the effect of plasma convection.

in the diffusion region. The reconnected field line is severely bent, so that the magnetic

tension accelerates the inflowing plasmas away from the neutral line along the boundary

layer. Thus the magnetic energy is converted to the plasma kinetic energy in the form of

accelerated and heated plasma jets flowing away from the neutral line. This description

of the field and plasma behavior was first suggested by Dungey (1953).

Next, let’s consider the interaction between the solar wind and the Earth magne-

tosphere, in which we concluded in the above discussion that the perfect conductivity

approximation was quite valid. If the magnetic field in the solar wind has a southward

component, it is likely that the northward magnetic field originated from the magne-

tosphere reconnects with the solar wind magnetic field in the dayside magnetopause.

In Figure 1.2, a convection model of the magnetosphere is shown in association with

the dayside reconnection after Dungey (1961). Magnetic reconnection in the dayside

magnetopause gives rise to open field lines connecting from the polar regions to the so-

lar wind, allowing the solar wind plasma to enter the magnetosphere. The solar wind

flow carries these field lines from the dayside to the night side of the magnetosphere

and stretches them out into the magnetotail lobe. The oppositely-directing magnetic

fields in the northern and southern tail lobes form a current sheet between them. Sub-

sequently magnetic reconnection occurs in the current sheet and reconnects the open
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Figure 1.2: Magnetospheric model of the Earth. Magnetic reconnection occurs at the
dayside magnetopause and the magnetotail current sheet, which facilitates the entry of
the solar wind momentum into the magnetosphere driving a large-scale internal convec-
tion. (Adopted from Cowley (1985))

field lines of the lobes, generating closed field lines in the earthward side. These closed

field lines are returned back to the near Earth magnetosphere with the plasma flow. If

the dayside reconnection does not occur, the magnetospheric field is confined to a cavity

surrounding the Earth as described by Chapman and Ferraro (1931). In such a case, the

magnetospheric and solar wind plasmas are separated by the magnetopause, and plasma

mass and momentum transfer across the boundary is weak. Thus magnetic reconnec-

tion in the Earth magnetosphere allows efficient entry of solar wind momentum into the

magnetosphere, driving a large-scale internal convection.

The importance of magnetic reconnection lies in the fact that a localized breakdown of

the perfect conductivity can lead to global structure changes via magnetic reconnection,

even though in the global scale itself the perfect conductivity approximation is quite

valid. Magnetic reconnection not only allows reconfigurations of the magnetic field to

take place toward states of lower energy, but also facilitates exchanges of plasma mass,

momentum, and energy between plasmas originating from different regimes.

The magnetospheric convection model driven by the dayside reconnection has been

established to explain large energy releases in association with magnetic substorms (e.g.,

Dungey, 1961; Axford et al., 1965; Petschek, 1966). This model has been supported

by extensive number of satellite observations and correlated ground observations (e.g.,

McPherron, 1970; Rostoker, 1972; Hones, 1973; Coroniti et al., 1980), in which the im-
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portance of the dayside and nightside reconnections for substorm dynamics was demon-

strated. Furthermore, subsequent satellite observations by Geotail spacecraft revealed

that magnetic reconnection in the near-Earth magnetotail occured at X = −20 to −30

Re in the GSM coordinate (Nagai et al., 1998), preceding a few minutes to the sub-

storm onsets identified by the ground observations (Miyashita et al., 1999). Therefore

it is overwhelming today that magnetic reconnection in the dayside and nightside of the

Earth magnetosphere should play an important role in substorm dynamics (Baker et al.,

1999).

Magnetic reconnection is also believed to be of importance in the solar flares as a

process for effective energy releases of the accumulated magnetic energy into the plasma

kinetic energy (e.g., Giovanelli, 1947; Sweet, 1958; Parker, 1963). The evidence of mag-

netic reconnection in the solar flares has been demonstrated through many X-ray ob-

servations (e.g., Gold, 1961; Sweet, 1969) and emphasized its responsibility for plasma

energization (Lin and Hudson, 1976).

1.2 Fluid Models Explaining Fast Reconnection

In this and next sections, we discuss detailed processes of magnetic reconnection

and show some important models describing the steady-state conversion processes of

magnetic energy to plasma kinetic energy. The key point in the following models is

how fast energy conversion as observed in the magnetospheric substorms and the solar

flares can be achieved. In this section, we introduce the well established Sweet-Paker

model (Sweet, 1958; Parker, 1963) and the Petschek model (Petschek, 1964), which were

constructed in the framework of the magnetohydrodynamics (MHD). We will discuss

more recent models beyond the MHD treatment of plasma in the subsequent section.

We start with the Sweet-Parker model shown in Figure 1.3. This model employs

two-dimensional plane system and assumes that plasma acceleration occurs only in the

diffusion region. Thus all the inflow plasma passes through the diffusion region and is

accelerated toward the downstream region. Since the magnetic energy is converted to the

plasma thermal energy due to Joule heating (via (1.5)) in the diffusion region, the plasma

pressure therein must be higher than in the surrounding region. If the diffusion region

has a finite length as shown in Figure 1.3 (shaded region), the pressure gradient should

arise along the boundary, which accelerates the inflowing plasma toward the downstream

region. Since either the flow speed in the inflow region and the magnetic field strength

in the outflow region are expected to be very small, Bernoulli’s law along a stream line
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Figure 1.3: Sketch of a reconnection geometry in the Sweet-Parker model.

passing through the diffusion region gives

P0 +
B2

1

2µ0
� P � P0 +

1

2
mnV 2

2 , (1.7)

where P0 is the plasma pressure in the region far from the diffusion region, P the plasma

pressure in the diffusion region, B1 the magnetic field strength in the inflow region, V2 the

flow speed in the outflow region, and m and n the mass and number density of plasma,

respectively. Note that we assume the plasma density is spacially uniform. Since we

consider the steady-state reconnection, Faraday’s law (∇ × E = 0) requires that the

out-of-plane electric field E0 should be spacially uniform, so that

E0 = V1B1 = V2B2, (1.8)

where V1 is the inflow speed, and B2 is the magnetic field strength in the outflow region.

We further assume that the plasma is incompressible, then the conservation of mass gives

V1L = V2λ. (1.9)

We can obtain the outflow velocity V2 from (1.7) as

V2 � B1√
µ0nm

≡ VA, (1.10)

which indicates that the plasma is accelerated up to the order of the Alfvén velocity

defined in the inflow region. We consider the reconnection rate, which means the mag-

netic flux reconnected per unit time and unit length along the X-line. From Faraday’s

law (∂B/∂t = ∇×E), it is found that the reconnection rate is simply estimated by the
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Figure 1.4: Sketch of a reconnection geometry in the Petschek model. The diffusion
region has been shrunk to a center of the diagram, instead the plasma is accelerated in
the slow-mode shocks (blue lines) extended from the X-line.

electric field imposed along the X-line (Dungey, 1978). Using equations (1.8), (1.9), and

(1.10), one can obtain

E∗ � λ

L
� R−1/2

m , (1.11)

where E∗ = E0/VAB1 is the normalized electric field, and Rm = µ0v1L/η is the magnetic

Reynolds number. We used (1.6) for the second transform. Note that the Sweet-Parker

model assumes the classical resistivity η arising from the Coulomb collisions (Spitzer,

1962).

The Sweet-Parker model realizes a fast plasma outflow. However, the reconnection

rate is inversely proportional to the square root of Rm defined by the system size L.

Such a Reynolds number is so large in the Earth magnetosphere and the solar coronas,

as we discussed before, that the reconnection rate becomes very small and insufficient to

explain fast energy releases associated with the magnetospheric substorms and the solar

flares.

In order to solve this problem, Petschek (1964) introduced the field configuration

shown in Figure 1.4. In the Petschek model, the diffusion region is shrunk to a center

of the reconnection region and most of the inflowing plasma does not pass through the

diffusion region in order to be accelerated. Instead, the plasma can be accelerated in

the slow-mode shocks (blue lines) extended from the X-line. The acceleration occurs

due to the J ×B force, different from the plasma pressure gradient in the Sweet-Parker

model. An approximate balance of the magnetic shear stress at the separatrices and the
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momentum change yields

mnV1V2 � B1B2

µ0

. (1.12)

Combination of (1.8) and (3.5) gives (1.10) again. However, since the Petschek model

does not depend on the size of the diffusion region in terms of plasma acceleration,

the horizontal scale of the diffusion region can be small. This is a key to allow fast

reconnection. According to Petschek (1964), the upper limit of the reconnection rate is

E∗
max � π

8
[ln(M2

ARm)]−1, (1.13)

whereMA = V1/VA is the Alfvén Mach number of the inflowing plasma. The reconnection

rate in this case is inversely proportional to the logarithm of Rm rather than to its square

root in the Sweet-Parker system, so it can be drastically increased. For typical Rm values,

E∗
max lies in the range 0.01 to 0.1, compared with 10−5 to 10−4 for the Sweet-Parker

model. Note that the diffusion region in the Petschek model is still significant since the

actual process of reconnecting the magnetic field occurs there.

Though the Petschek model achieves much faster reconnection than the Sweet-Parker

model, it is still difficult to produce sufficiently high resistivity for realizing large recon-

nection rate in the collisionless plasma. For example, if the size of the diffusion region

is assumed to be the order of the ion inertial length, 106 ∼ 107 times larger resistiv-

ity than the conventional Coulomb resistivity is required in order to achieve E∗ � 0.1,

which is the case in the magnetospheric substorms. Nevertheless the Petschek model is

well consistent with numerical simulations and satellite observations. For example, the

slow-mode shocks are obtained in the MHD simulations (Sato, 1979; Scholer and Roth,

1987; Ugai, 1993) and detected by the Geotail observations (Saito et al., 1995). The

fact that the outflow velocity from the diffusion region reaches the Alfvén velocity is

also confirmed by kinetic simulations (e.g., Shay et al., 1998; Hesse et al., 1999) and the

Geotail observations (Nagai et al., 1998). Thus the remaining question is what is the

generation mechanism of such high resistivity, much higher than the classical resistivity

due to Coulomb collisions. In the next section, we discuss more recent model to produce

such high ‘effective’ resistivity beyond the MHD framework.

1.3 Kinetic Aspects Beyond the MHD Framework

As discussed in the previous sections, the ideal MHD condition breaks down in the

vicinity of the X-line and the magnetic diffusion becomes dominant, forming the diffusion

region. In the MHD framework, the magnetic diffusion has attributed to the resistivity
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generated by the classical Coulomb collisions (Spitzer, 1962) and it was found that the

values were too small to drive fast reconnection in the collisionless plasma. Our next

step is to consider more general features of plasma beyond the MHD framework. In this

section we start with the generalized Ohm’s law in a steady state, which describes a

two-fluid plasma,

E + V × B = −me

e
(V e · ∇)V e − 1

ne
∇ · P e +

1

ne
J × B, (1.14)

whereme is the electron mass, V e the electron flow velocity, and P e the electron pressure

tensor. We assume that the classical resistivity term (ηJ) is negligible. If any term in

the right-hand side of (1.14) is negligibly small compared with the convection term in

the left-hand side, the ideal MHD condition holds. Thus, in order to determine when

the froze-in condition can break down, it is necessary to estimate the order of magnitude

of each term in the right-hand side.

The first term expresses electron inertial effects and the scale size is the order of the

electron inertial length λe. The scale length of the second term (pressure gradient) is the

order of the electron gyroradius λge. The last term represents the decoupling between

ions and electrons, so-called Hall effects, and has a scale size of the ion inertial length

λi. When the scale length of gradient is much larger than any of these characteristic

lengths, the frozen-in condition holds.

In two-fluid system consisting of ions and electrons, the inflow ions can be decoupled

from the ambient magnetic field when they approach the neutral sheet as close as λi.

Thus the region within λi is the diffusion region. Electrons, however, still remain mag-

netized at this distance, since their inertia is much smaller than those of ions. Instead,

their frozen-in constraint can break down at the distance comparable with the local gy-

roradius λge, within which electrons are expected to perform the meandering motions

(e.g., Pei et al., 2001). This non-magnetized region for electrons is called the electron

diffusion region. Therefore the diffusion region in the two-fluid system develops two-

scale structure as shown in Figure 1.5, different from the MHD system (see Figure 1.1).

The electron diffusion region with the scale size of λe is found to be embedded within

the ion-scale diffusion region. Thus inside the diffusion region but outside the electron

diffusion region, ions are decoupled from the ambient magnetic field but electrons are

still frozen-in to the field and continue to move with the E × B drift motion toward

the current sheet. This relative motion between ions and electrons produces currents

in the vicinity of the X-line, forming the Hall current system (Sonnerup, 1979; Tera-

sawa, 1983). Sonnerup (1979) first predicted the presence of the Hall current system

theoretically in which the four current loops resulted in a quadrupole structure in the
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Figure 1.5: Two-fluid picture around the X-line. The diffusion region develops two-
scale structure associated with the ion and electron scales, forming the electron diffusion
region in side the ion-scale diffusion region. Red arrows represent the ion flow vector,
while blue arrows the electron flow vector.

out-of-plane (dawn-dusk) magnetic field variations. In the past decade, not a few studies

with hybrid simulations (e.g., Mandt et al., 1994; Hesse and Winske, 1994, 1998; Lin and

Swift, 1996; Nakabayashi and Machida, 1997; Nakamura et al., 1998; Shay et al., 1998,

2001) and full particle simulations (e.g., Tanaka, 1995; Hoshino et al., 1998, 2001a,b;

Hesse et al., 1999) have confirmed the presence of the Hall current system and the asso-

ciated quadrupole magnetic field structure in the reconnection process. In these studies

electrons have been ascertained to play as carriers of the Hall currents. Furthermore,

Nagai et al. (2001) recently found the Hall current system (the accelerated electrons)

and its effect on the magnetic field in the Earth magnetotail, using magnetic field and

plasma measurements onboard the Geotail spacecraft.

In the electron diffusion region, on the other hand, the kinetic behavior of electrons

becomes important. The reconnection process of the magnetic field actually proceeds in

this region. It has been revealed by using two-dimensional kinetic simulations that the

dissipation process in the electron diffusion region is supported by the electron inertia

and the gradient of the electron pressure tensor in the generalized Ohm’s law (1.14)

(Hesse and Winske, 1998; Kuznetsova et al., 1998; Hesse et al., 1999). This indicates

that the collision effect in a classical sense is replaced by electron inertial effects in the
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collisionless reconnection. If their model is really appropriate as the dissipation model,

three-dimensional features such as the anomalous resistivity arising from interactions

between waves propagating along the current sheet and plasma particles would be neg-

ligible, and the reconnection process might be basically two-dimensional.

Though the dissipation process of magnetic field is supported by the electron dy-

namics, it has little or no effect on the reconnection rate (Biskamp et al., 1997; Shay

and Drake, 1998; Birn et al., 2001). Instead ion dynamics can control the reconnection

process so the electron-scale structure, in which the actual reconnection of the magnetic

field takes place. They suggest that the high reconnection rate is produced by the Hall

term in the generalized Ohm’s law (1.14), so that the inclusion of the Hall effects should

be a sufficient condition to achieve fast reconnection. Though recent simulation studies

comparing MHD, Hall MHD, hybrid, and full particle simulations confirmed the impor-

tance of the Hall effect for fast reconnection, the system did not reach steady state and

the reconnection rate decreased after it reached a peak value (Shay et al., 2001; Hesse

et al., 2001; Pritchett, 2001; Kuznetsova et al., 2001). They attributed the reason to

the periodic system in the direction of the initial magnetic field, in which compressional

effects in the magnetic islands could affect the reconnection process. One of the solu-

tions in order to suppress the boundary effects is to perform the above comparison in a

large system so that the periodicity is negligible therein. However, such simulations with

conventional full particle models are still hard to be carried out within the limitation of

computer resources. Furthermore, recent hybrid simulations demonstrated that the Hall

effects were not needed to achieve fast reconnection (Karimabadi et al., 2004), although

their simulations did not include the electron kinetic effects. Therefore it is necessary to

reconsider what is supporting fast reconnection in collisionless plasma system.

1.4 Objective of the Thesis

Main problems on the physical processes associated with magnetic reconnection are

summarized in the following three ponts:

1. What trigger magnetic reconnection?

2. What supports fast reconnection in a steady state? Are the Hall effects sufficient

for achieving large reconnection rate?

3. What is the energy transport process, that is, how and where can plasma be

accelerated and heated?
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Each of the above processes is expected to include strongly nonlinear coupling among

electron-, ion-, and MHD-scale processes. Thus numerical simulations in self-consistent

systems have been extensively examined to understand these subjects. The difficulty

in considering the problems associated with magnetic reconnection lies in the locality

of micro-scale processes embedded in macro-scale processes. In order to make a self-

consistent description around the reconnection region, it is necessary to perform a large-

scale kinetic simulation including from electron kinetic processes to MHD processes.

However, it is still difficult to carry out such simulations by using conventional kinetic

codes (e.g., particle-in-cell code, Vlasov code, and so on) because of the limitation of

computer resources.

In this thesis, we first develop 2-1/2 dimensional full particle code (in which both ions

and electrons are treated as finite-size superparticles) with adaptive mesh refinement

(AMR) technique. The AMR technique subdivides and removes cells dynamically in

accordance with a refinement criterion and it is quite effective to achieve high-resolution

simulations of phenomena that locally include micro-scale processes. This new code

allows us to perform large-scale simulations of magnetic reconnection, which gives two

advantages on the modeling of magnetic reconnection. One is that it enables us to

describe the long time evolution of the current sheet without caring the effects due to

the periodic boundary condition, which is related to the second problem listed above.

The other is that it is literally possible to pursue kinetic processes in an extensive region

around the X-line, which leads to the understanding of electron heating mechanism in

the plasma sheet-lobe boundary region (relating to the third problem).

In Chapter 2 we will give a detailed description of the new electromagnetic full particle

code with the AMR technique and emphasize the efficiency compared with conventional

particle codes. Chapter 3 is devoted to the long time evolution of the reconnection rate.

We will show that the reconnection rate can drop after it reaches a peak value. The Hall

effects shown in the previous section seem to be still important until the reconnection

rate saturates. However, the meandering motion of the cold ions can lead to a structure

change of the electron diffusion region, causing the damping of the reconnection rate. A

generation mechanism of the heated electrons and the solitary waves, which have been

often observed in the Earth magnetotail, is explained in Chapter 4. Finally, in Chapter

5, we summarize this study and present a vision for future studies. Especially it is

emphasized that developing the three-dimentional version of our code is inevitable in

order to understand the triggerring mechanism of magnetic reconnection.



CHAPTER 2

Electromagnetic Full Particle Code
With Adaptive Mesh Refinement
Technique

2.1 Introduction

Magnetic reconnection plays an important role in a fast conversion process of the

magnetic energy to plasma kinetic and thermal energy. It occurs in the accretion disks of

astrophysical bodies, solar flares, and the Earth magnetosphere, so that it is a ubiquitous

phenomenon in the universe.

In the Earth magnetosphere, magnetic reconnection facilitates the entry of particles

and energy from the solar wind into the magnetosphere at the day-side magnetopause.

It is also believed to affect the dynamics of magnetospheric substorms by changing the

current sheet structure and the configuration of magnetic field lines in the Earth mag-

netotail. In a reconnection process, the ideal magnetohydrodynamic (MHD) condition

breaks down in the diffusion region arising near the X-line, where dissipation processes

of the magnetic field are dominant. In a sufficiently collisional plasma, the resistive

MHD theory (e.g., Sweet, 1958; Parker, 1963; Petschek, 1964) is valid for describing the

diffusion region by parameterizing collisional effects. However in a region where the clas-

sical collision rate is very small such as in the magnetosphere, the Sweet-Parker diffusion

region is elongated and the reconnection rate is impractically low (Vasyliunas, 1975). Ac-

tually in such a collisionless plasma, the diffusion region develops a two-scale structure

associated with the electron and ion scales, that is, the electron inertial length λe and the

ion inertial length λi, respectively. Within a distance from the X-line of the order of λi,

the ions are easily unmagnetized because they have large gyroradii compared with the

scale size λi. We call this region the ion diffusion region. On the other hand, even closer

to the X-line the electrons also decouple from the ambient magnetic field. This region,
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which is called the electron diffusion region, has scale size of λe. Inside the electron dif-

fusion region, where the electrons are unmagnetized and strongly accelerated away from

the X-line, the nongyrotropic electron pressure can give rise to the reconnection electric

field (Hesse and Winske, 1998), which implies that kinetic effects of the electrons are

essential to dissipation mechanisms of the magnetic field in the electron diffusion region.

Outside the electron diffusion region but inside the ion diffusion region, the ion motion

decouples from that of the still frozen-in electrons. This difference in motion produces

currents, so-called Hall current system, in the vicinity of the X-line (Sonnerup, 1979).

It is suggested that the inclusion of the Hall term realizes much faster reconnection rate

than that in the case of a resistive MHD (Birn et al., 2001, and references therein). Thus

a full particle simulation, in which both electrons and ions are treated as particles, is

very effective to describe the dynamics in the vicinity of the X-line.

Most full particle codes employ particle-in-cell (PIC) technique, in which the current

and charge densities are accumulated on a spatial grid from the particle data and the

forces on the particles are interpolated from the adjacent spatial grids. Though the

full particle model using PIC technique is conceptually very simple and one does not

introduce any approximation in the basic laws of mechanics and electromagnetism, the

restrictions on the grid spacing are very severe and one must set it to be as small as the

electron Debye length λDe, which is the order of 103 m in the central current sheet of

the magnetotail. On the other hand, magnetic reconnection changes the current sheet

structure dynamically in MHD scale of the order of 109 m. Hence, for modelling of the

magnetosphere including the nonlinear evolution of magnetic reconnection, the spatial

dynamic range is required to be 106. Furthermore, since the electromagnetic PIC code

requires at least dozens of particles per cell to suppress a numerical noise, the number

of particles for each species is over 1013 even in the two dimensional system. However a

simulation with 1012 cells and 1013 particles in the two dimensional system is unrealistic

today due to the limitation of computer resources. Usual compromise is to use low mass

ratio of the ion to the electron, although too low mass ratio allows a spurious wave mode

to grow (Daughton, 1999). However, even when the mass ratio is 100 instead of 1834 that

is realistic, the required numbers of cells and particles are 1010 and 1011, respectively. It

is still difficult to conduct such a simulation with currently available computer resources.

In the Earth magnetotail, the number density of plasma is confirmed to be much

higher in the central plasma sheet than in the lobe region according to the observations

with satellites (e.g., Baumjohann et al., 1989; Baumjohann and Treumann, 1997), so

that the electron Debye length is the smallest in the central plasma sheet. Therefore,

the spatial resolution required for the numerical stability is much higher in the central
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plasma sheet than in the lobe region. Since the diffusion region appears also in the

central plasma sheet, the spatial resolution should be high there also in terms of the

physical perspective. In conventional full particle simulations of magnetic reconnection

(e.g., Pritchett, 1994; Tanaka, 1995; Hesse and Winske, 1998; Shay et al., 2001; ?), the

spatial resolution has been uniform in the whole simulation area in accordance with that

required in the central plasma sheet. Thus, in the lobe region which occupies most of the

simulation area, the spatial resolution has been unnecessarily high. The adaptive mesh

refinement (AMR) technique is beneficial to reducing the number of cells and saving

computer resources by introducing finer cells hierarchically in only the regions, such

as the central plasma sheet and the diffusion region, where higher spatial resolution is

required (see § 2.2.1).

A block structured adaptive method was extensively developed by Berger and the

coworkers to solve partial differential equations on a hierarchy of nested cells covering

high-resolution regions (Berger and Oliger, 1984; Berger and Colella, 1989). An introduc-

tion of the AMR technique to a particle code has been examined for the application to

the N-body simulations describing cosmological matter such as the formation and struc-

ture of galaxies (Villumsen, 1989; Jessop et al., 1994; Suisalu and Saar, 1995; Gelato et

al., 1997; Kravtsov et al., 1997; Yahagi and Yoshii, 2001; Knebe et al., 2001; Teyssier,

2002). In the N-body codes, the mass density is assigned to the neighboring grids using

the cloud-in-cell (CIC) algorithm, which is equivalent to the PIC algorithm for orthog-

onal coordinates (Birdsall and Langdon, 1991). In the early N-body codes with the

AMR technique (Villumsen, 1989; Jessop et al., 1994; Suisalu and Saar, 1995; Gelato

et al., 1997), they adopted nested cells as like as Berger and Oliger (1984) to increase

force resolution, so that the refined regions were give in rectangular shape. Though the

rectangular refinements facilitate the data structure, they are not suitable for models

including the complicated structures that are difficult to cover efficiently with rectan-

gular regions. On the other hand, a tree structured cells have been also used in order

to increase the spatial resolution locally and achieve a high dynamical range simula-

tion (Barnes and Hut, 1986; Griebel and Zumbusch, 1999; Dreher and Grauer, 2005).

Kravtsov et al. (1997) developed the adaptive refinement tree (ART) code, in which the

tree structured cells are connected with each other on all hierarchical levels. The ART

code subdivides all cells that satisfy a refinement criterion regardless of the shape of

the refined regions, so that it enables us to achieve an efficient refinement to cover a

complicate structure. Although their code is adaptive only in space,recently developed

codes (Yahagi and Yoshii, 2001; Knebe et al., 2001; Teyssier, 2002) are adaptive not

only in space but also in time. Plasma simulations using an electrostatic PIC code with
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the AMR have been recently examined in order to describe the ion beam transport in a

heavy ion fusion (Vay et al., 2004).

In this paper we present a newly developed two and a half dimensional electromag-

netic full particle code with the AMR technique. In this code we deal with two species of

charged particles, that is, ions (protons) and electrons. The current and charge densities

are assigned onto the hierarchical cell corners using the PIC algorithm, which process

is similar to the mass density assignment by the CIC algorithm used in the N-body

codes. The electromagnetic field is calculated via Maxwell’s equations, unlike the Pois-

son equation used to derive the gravitational field in the N-body codes. The particles

(superparticles) are also subdivided in the refined regions in order to suppress the nu-

merical noise that arises due to the decrease in the number of the particles per cell. In

the following sections we describe the details of our code (§ 2.2), and discuss the results

of test simulations and application to the current sheet evolution (§ 2.3). Finally we

summarize and conclude this work in § 2.4.

2.2 Description of the Code

2.2.1 Data Structure and Cell Generator

In order to increase a spatial resolution efficiently, the AMR technique subdivides

only cells that satisfy a refinement criterion and add data sets for finer cells hierarchically

onto the uniform base cells that cover the entire simulation area. If a base cell is refined,

it has four child cells that have half the size of the base cell. These child cells can be also

refined in turn and finer cells are generated, and so on. In our code, a refinement level

L in the hierarchy is defined by using the cell size of the level (∆L) as L ≡ log2(ly/∆L),

where ly is the vertical size of the two-dimentional simulation area. We use only cells

with integer level.

The data structure in our approach is completely different from that used in the

conventional electromagnetic particle codes. Cells are treated as independent units or-

ganized in refinement trees rather than elements of arrays, so that one can build a very

flexible cell hierarchy that can be easily modified. The hierarchical cell structure in our

code is basically the same as the fully threaded tree structure developed by Khokhlov

(1998), and supported by a set of pointers as shown in Figure 2.1. Each cell is needed to

have information of the parent, child, and neighboring cells. Since a cell has four child

cells, if any, we group these four cells together in order to save memory for pointers and

facilitate parallel computing. We call this group an oct (after an octet in the case of a

cubic cell). Each cell has a pointer to the child oct (OctCh). Each oct has pointers to
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Figure 2.1: Hierarchical data structure in our code. One dimensional structure is shown
for simplicity. The pointers that each cell or oct has are basically the same as those in
the tree structure developed by Khokhlov (1998), but we additionally give two pointers,
inp directed to a representative superparticle from each oct, and pnb directed from each
particle to the neighboring particle in the same oct.

the parent cell (iPr), the parent cells of the neighboring octs (iNb), and a representative

particle belonging to the oct (inp). Note that each particle belongs to the finest oct in

which the particle is located. Each particle has a pointer to the neighboring particle in

the same oct (pnb), which leads to a beaded structure of particles as described in Figure

2.1 (Teyssier, 2002). In addition to these pointers, each oct has information of the level

of cells included therein, the integral position at a corner of the oct, and the number

of particles in the oct. The level of a cell is very useful information to efficiently sweep

through a level. The position of a oct and the number of particles included in the oct

are helpful to construct the beaded structure of particles. Each cell also has physical

data at a corner of the cell; charge density, current density, and electromagnetic fields.

A refinement process subdivides a cell that satisfies a refinement criterion and gen-

erates four child cells. In electromagnetic particle codes, one of the refinement criteria

should be defined by the local electron Debye length in terms of the numerical stability.

However, additional criteria can be introduced in accordance with physics that is incor-

porated in the code. An example in the case of nonlinear evolution of the plasma sheet is

shown in § 2.3.3. When the parent cell is refined, we check if there exist the surrounding

eight cells having the same level as the parent cell. Even if one of eight cells are absent,

no splitting is implemented and no child cells are created. Thus, in our tree structure,

no neighboring cells have level difference greater than one, which assures that there are
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no sharp gradients on the boundaries of the refined regions.

The refinement procedure is similar to that in Kravtsov et al. (1997). The process

is started from the base level cells and recursively proceeds to reach the dynamic range

level cells at each time step. First, we put flags to cells that satisfy refinement criteria.

At this point, no cells are subdivided. In order to smooth the marked region, we next put

flags to the eight cells surrounding each cell flagged firstly. Furthermore, we construct

buffer region surrounding the refined region by giving other flags to cells that surround

the originally flagged cells but have no flags for the refinement. The buffer regions are

used to set boundary conditions for calculating the electromagnetic fields in the refined

region as mentioned in § 2.2.4. After that, we search again the whole cells with the

target level. If a cell has a flag but has no child cells, the cell is subdivided and half-sized

refined or buffer cells are generated. If a cell has no flag but has child cells, the child

cells are removed from the hierarchical structure. If a cell has both a flag and child

cells, or has neither a flag nor child cells, no operation is conducted for the cell. Thus

the refinement operation is performed only to the cells that have any changes in terms

of the refinement criteria at each time step, so that the refinement procedure is quickly

completed.

The beaded structures of particles must be rearranged in association with the refine-

ment procedure and the movement of particles. When a new oct is created, the particles

located in the parent cell are removed from the beaded structure in the parent oct and

reconnected to that in the child oct. On the other hand, when an oct is removed from

the tree structure, the beaded structure is reconnected to that in the parent oct. Fur-

thermore, particles moving away across oct boundaries are removed from the beaded

structure in the oct and reconnected to those in new octs in which they are located.

2.2.2 Particle Splitting and Coalescence

One of the main problems in developing the electromagnetic PIC codes using the

AMR technique is decrease in the number of particles per cell in the refined regions

(Fujimoto and Machida, 2005a). Especially, in the vicinity of the X-line formed in as-

sociation with magnetic reconnection, spatially high-resolution simulations are required

because the kinetic effects of electrons are expected to be important. However, the num-

ber density of plasma in such a region is low due to inflow of the tenuous plasma in the

lobe region, so that the number of particles per cell is decreased and the numerical noise

is increased.

In order to solve the problem, we subdivide particles (superparticles) residing in the

subdivided cells and control the number of particles per cell. We use the particle splitting-
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coalescence algorithm developed by Lapenta (2002). The processes should conserve the

following quantities,

1. the moments on each grid, that is, the charge and current densities,

2. the total charge and mass of particles,

3. the total momentum and energy of particles,

4. the distribution function of particles.

In the splitting algorithm in the two-dimensional system, a particle with charge q0, mass

m0, position x0, and velocity v0 can be replaced by four particles. The new particles

labeled by p (p = 1, 2, 3, 4) have charges qp = q0/4, masses mp = m0/4, and velocities

vp = v0. The new particles are located at x1,2 = x0 ± ∆r, x3,4 = x0, y1,2 = y0,

y3,4 = y0 ± ∆r (see Figure 2.2a). Here, ∆r should be chosen so as to suppress the local

fluctuation of the spatial particle distribution, which can arise from the particle splitting,

as much as possible. In this context, ∆r = ∆L/
√
Np is considered to be a natural choice

in the two-dimensional case, where Np is the number of particles in the cell with the size

∆L. This algorithm exactly conserve the above mentioned four quantities, if the new

particles are all located in the same cell as the old particle. If one of the new particles

is expected to be placed in a neighboring cell, the splitting is not implemented.

We also conduct the coalescence of particles. This algorithm is also simple. In our

code, we choose two particles labeled by 1 and 2 that are located in the same cell and have

same charges q1 = q2 = q (that is, same masses m1 = m2 = m), and proximate velocities

v1 and v2 which satisfy |v2 − v1| < αvth, where vth is the thermal velocity defined by

vth ≡ √
2T/m (T is temperature), and α is a small value which is set as α = 0.1 in

our code unless otherwise mentioned. The new particle labeled 0 has charge q0 = 2q,

mass m0 = 2m, position x0 = (x1 + x2)/2, and velocity v0 = (v1 + v2)/2 (see Figure

2.2b). However, the coalescence process does not exactly conserve the total energy of

particles and the distribution function (Lapenta, 2002). The difference in kinetic energy

of particles between before and after the coalescence is found to be under 25α2 percent of

mv2
th, so that the error that arises during one coalescence is within 0.5% of the thermal

energy of particles with mass m in our code (α = 0.1). Nonetheless, we hardly conduct

the particle coalescence (usually once in a few hundred time steps), and never choose the

particles in the most refined cells to avoid the numerical errors in physically important

regions.
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Figure 2.2: Particle splitting and coalescence method in the two-dimensional system.
The splitting process in (a) subdivides a particle labeled 0 into four particles numbered
1 to 4, while the coalescence process in (b) joins two particles numberd 1 and 2 and
generates a new particle labeled 0 at the midpoint.

2.2.3 Particle and Force Weighting within the Hierarchical Cell

We use the standard PIC algorithm to accumulate the charge and current densities

onto each cell corner and interpolate the force on a cell corner to a particle. The charge

and current that a particle located in a cell carries are assigned to the four cell corners

in the following forms,

ρn
l,m =

∑
s

∑
j

qsjSL(xn
sj − X l,m), (2.1)

j
n+1/2
l,m =

∑
s

∑
j

qsjv
n+1/2
sj

SL(xn
sj − X l,m) + SL(xn+1

sj − X l,m)

2
, (2.2)

where qsj, xn
sj, and vn

sj are the charge, position, and velocity of j-th particle of species

s (ion and electron) at time n∆t (∆t is a time interval and equivalent for all particles),

respectively, and X l,m represents the spatial position (l∆L, m∆L) of a cell corner. SL(x)

is the shape function and defined by using the cell size ∆L on each refinement level L in

the form,

SL(x, y) =

⎧⎨
⎩

(∆L − |x|)(∆L − |y|)
∆2

L

if |x| ≤ ∆L and |y| ≤ ∆L

0 otherwise.
(2.3)

Each particle is belonging to the finest oct including the particle, which means that it

is only the oct that has a direct connection to the particle without passing through the

other octs. However, we solve Maxwell’s equations and the Poisson equation on every
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refinement level independently as described in § 2.2.4, so that the charge and current

densities must be assigned onto every cell regardless of whether or not the oct including

the cell has a pointer to a particle. This assignment process using equations (2.1) and

(2.2) is very heavy and time consuming. So we do not adopt this manner for all the

cells. Alternatively this process is carried out only for the cells belonging to the octs

that have direct pointers to the particles locating in the cells, and the following operation

is conducted for the other cells,

AL
l,m =

1

16
{4AL+1

2l,2m

+2 (AL+1
2l−1,2m + AL+1

2l,2m−1 + AL+1
2l+1,2m + AL+1

2l,2m+1)

+ (AL+1
2l−1,2m−1 + AL+1

2l−1,2m+1 + AL+1
2l+1,2m−1 + AL+1

2l+1,2m+1)},
(2.4)

where AL
l,m is a physical quantity (charge density and current density in the current

case) at the spatial position of (l∆L, m∆L) on the level L cells. The charge and current

densities calculated by the use of equation (2.4) is found to be identical to those derived

by equations (2.1) and (2.2), if they are known on the finer cells. This procedure is very

fast compared with equations (2.1) and (2.2).

The electromagnetic fields at the positions of the level L particles are interpolated

from the cell corners on the refinement level L in order to calculate the forces that works

on the particles. The interpolation is also implemented by using the PIC algorithm:

EL(xsj) =
∑

l

∑
m

EL
l,mSL(xsj − X l,m), (2.5)

BL(xsj) =
∑

l

∑
m

BL
l,mSL(xsj − X l,m), (2.6)

where EL
l,m and BL

l,m are the electric and magnetic fields at the position of (l∆L, m∆L)

on the refinement level L, respectively.

2.2.4 Integration of the Field Equations

We use the complete set of Maxwell’s equations to derive the electromagnetic fields.

The time advancements of the electric field E and magnetic field B are described by

Ampère’s law and Faraday’s law, respectively, that is,

∂E

∂t
= c2∇× B − 1

ε0

j, (2.7)

∂B

∂t
= −∇× E, (2.8)
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where c is the velocity of light, and ε0 is the dielectric constant in vacuum. The time

differences of equations (2.7) and (2.8) are,

En+1 − En

∆t
= c2∇×

∼
B

n+1/2

− 1

ε0
jn+1/2, (2.9)

Bn+1 − Bn

∆t
= −∇×

∼
E

n+1/2

, (2.10)

where,

∼
E

n+1/2

=
En + En+1

2
, (2.11)

∼
B

n+1/2

=
Bn + Bn+1

2
. (2.12)

Here, the superscripts denote the time levels.

The initial fields E0 and B0 are determined self-consistently with the spatial dis-

tributions of the initial charge and current densities. To advance the field data, one

eliminates Bn+1 in equation (2.9) by the use of equations (2.10), (2.11), and (2.12), and

obtains, (
1 +

c2∆t2

4
∇×∇×

)
En+1 =

(
1 − c2∆t2

4
∇×∇×

)
En

+ c2∆t∇× Bn − ∆t

ε0
jn+1/2.

(2.13)

The right-hand side consists of the known fields and currents, while the left-hand side has

the elliptic operator. Since the boundaries of the refined regions can have an arbitrary

shape in our algorithm, methods to solve the equation are restricted and we choose the

conjugate gradient method which is one of the relaxation methods (Press et al., 1992).

If En+1 is obtained from equation (2.13), then Bn+1 is calculated from equations (2.10)

and (2.11).

However, the assignments of the charge and current densities by using equations (2.1)

and (2.2), or equivalently equation (2.4), may violate the continuity equation,

∂ρ

∂t
+ ∇ · j = 0. (2.14)

If this equation is not satisfied, the straightforward integration of equations (2.7) and

(2.8) will lead to the evolution of nonphysical fields that do not satisfy ∇ · E = ρ/ε0.

Thus we need to make a correction to ensure that ∇ ·E = ρ/ε0 is maintained (Langdon

and Lasinski, 1976). If E is a corrected electric field and E is that computed from

equation (2.7), we assume E = E −∇δφ. Then δφ is calculated by solving the Poisson
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equation,

−∇2δφ =

(
1 +

∆2
L

6
∇2

)
ρ

ε0
−∇ · E. (2.15)

The first term of the right-hand side is worth noticing. The second term in the paren-

theses arises from the truncation error of the second-order central differences of ∇ · E.

∇·E in the difference equation has the truncation error within the second order in space

(∼ o(∆2
L)), while the replacement of ∇ · E = ρ/ε0 has no truncation so that no errors

are included. This difference in truncation error can yield nonphysical electrostatic field

because the error can become the source in the Poisson equation. If the difference form

of ∇·E in one-dimensional system is given by (Ex,i+1−Ex,i−1)/2∆L (the subscripts i+1

and i−1 denote the positions of cell corners), this term is approximated in the following

form in the spatial fourth-order accuracy,

Ex,i+1 −Ex,i−1

2∆L
� ∂Ex

∂x

∣∣∣∣
i

+
∆2

L

6

∂3Ex

∂x3

∣∣∣∣
i

. (2.16)

The second term of the right-hand side of the equation expresses the truncation error

within the spatial second order. We add this term explicitly. Since ∂Ex/∂x = ρ/ε0

is exactly satisfied, the right-hand side of this equation becomes the first term of the

right-hand side of equation (2.15). In two- or three-dimensional system, equation (2.15)

is also satisfied within the second-order accuracy. The Poisson equation is solved by

using the conjugate gradient method again.

In our code, the electromagnetic fields are first calculated from equations (2.13) and

(2.10) on the base level (LB) cells, because the boundary conditions at the edge of the

simulation area are assumed to be given. The solutions are interpolated onto the buffer

cell corners on the next level cells as the boundary conditions as shown in Figure 2.3

(Yahagi and Yoshii, 2001). The interpolations are simply performed in the linear form,

AL+1
2l,2m = AL

l,m,

AL+1
2l+1,2m =

1

2
(AL

l,m + AL
l+1,m),

AL+1
2l,2m+1 =

1

2
(AL

l,m + AL
l,m+1),

AL+1
2l+1,2m+1 =

1

4
(AL

l,m + AL
l+1,m + AL

l,m+1 + AL
l+1,m+1).

(2.17)

Then the electromagnetic fields are solved on this level (LB +1) cells by the use of equa-

tions (2.13) and (2.10). These solutions are also interpolated to the buffer cell corners on

the next level cells, and the procedure is recursively carried out until the solutions on the

dynamic range level (LD) cells are obtained. After then, the field data on the LD cells
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Figure 2.3: Interactions of the field data between the levels L and L+ 1. The solutions
on the level L cells are interpolated onto the buffer cell corners on the level L + 1 cells
as the boundary conditions. The electromagnetic fields solved on the level L + 1 cells
are in turn projected to the level L cells.

are projected onto the LD − 1 cells, and the process are also recursively proceeded until

the data on the LB cells are replaced (see Figure 2.3). The projections are performed

by using equation (2.4) which is found to eliminate the aliasing. Finally, the Poisson

solver described in equation (2.15) must be executed to maintain ∇ · E = ρ/ε0 on each

level cells. The electromagnetic fields obtained by this procedure without recalculating

under the corrected boundary conditions, however, do not give proper solutions on each

refinement level, because they are not continuously differentiable at the boundaries of

the refined regions (Huang and Greengard, 2000; Vay et al., 2004). Nevertheless, the

test simulations described in § 2.3 indicate that numerical errors in association with the

cell refinement are almost negligible, so that we consider that the influence of the incon-

sistency in the field solutions between refined regions is not significant. More accurate

treatment of the elliptic equations will be examined in the future work.
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2.2.5 Integration of the Equations of Motion

The initial particle distribution in velocity space is chosen to be Maxwellian or

shifted-Maxwellian. The Maxwell’s distribution is obtained using the Box-Muller method

(Press et al., 1992), in which particle velocities with a thermal velocity vth are described

in the form,

v1 = vth

√
−2 ln x1 cos 2πx2,

v2 = vth

√
−2 ln x1 sin 2πx2,

(2.18)

where x1 and x2 are the uniform random numbers. The velocities v1 and v2 are inde-

pendent of each other.

The particle equations of motion to be integrated are,

dvsj

dt
=

qsj
msj

(E(xsj) + vsj × B(xsj)), (2.19)

dxsj

dt
= vsj, (2.20)

where, msj is the mass of j-th particle of species s. E and B must be those on the cells

whose level is the same as the particle level. The time differences of equations (2.19)

and (2.20) are,

v
n+1/2
sj − v

n−1/2
sj

∆t
=

qsj
msj

(
En(xn

sj) +
v

n+1/2
sj + v

n−1/2
sj

2
× Bn(xn

sj)

)
,

xn+1
sj − xn

sj

∆t
= v

n+1/2
sj .

Above equations represent a standard second-order leapfrog integration scheme. We use

the Buneman-Boris method to calculate v
n+1/2
sj , in which the electric and magnetic forces

are separately treated (Birdsall and Langdon, 1991).

2.3 Test Simulations

2.3.1 Landau Damping of the Langmuir Waves

Our code is firstly checked against the Landau damping of the Langmuir waves that

propagate across the refined regions. The initial setting of the Langmuir waves in the

two-dimensional system is given as one-dimensional plane waves with an appropriate

dispersion relation, which are assumed to propagate in the x direction (the horizontal

direction in the simulation area) and to be uniform in the y direction. The boundaries

of the system are periodic in both x and y directions. The number of the base level
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cells is Nx × Ny = 64 × 64, unless otherwise mentioned, which means LB = 6. In

this and next subsections, we assume the number of refined layers is only one so that

LD = 7 in order to avoid considerable numerical noise due to small number of particles

per cell in the case that we do not conduct the particle splitting for comparison. In

the run including the AMR, we initially subdivide the base level cells that satisfy the

condition, |Xj − lx/2| < 16∆LB
, where Xj is the central x-coordinate of the j-th cell, and

lx represents the horizontal size of the simulation area. The refined region is assumed

to be fixed to the base level region and not changed, even though a wave ridge moves

from one place to another as time goes on. Thus we have an interest only in whether

the waves propagate properly across the boundaries from the base region to the refined

region and vice versa, and the hierarchical cells with the particle splitting-coalescence

algorithm are adequately applied to the conventional PIC codes. In the runs including

the AMR and particle splitting algorithms, the particles that are located in or enter the

refined region can be split into four particles, and the child particles can be carefully

coalesced if they move outside the region. Other initial parameters are set as mi/me =

104, Ti/Te = 1.0, ωce/ωpe = 1.0, and c/vth,e = 102, where ms and Ts represent the

mass and temperature of species s, ωce and ωpe are the cyclotron frequency and plasma

frequency of electrons respectively, and vth,e is the electron thermal velocity defined as

vth,e ≡
√

2Te/me. Adoption of an unrealistic high mass ratio indicates that we have an

interest only in the electron scale processes, but not those of the ion scale. The size of

the base level cells is set as ∆LB
= 1.0× 10−2λe, where λe is the electron inertial length.

The time step is chosen ∆tωpe = 5.0 × 10−3 in the whole region. The initial number of

particles is 64 per base level cell, so that the total number is approximately 2.6 × 105.

Figure 2.4 shows the time evolutions of the field energy of the wave component Ex

normalized by the initial values. We have examined three cases of λ = 8∆LB
, 12∆LB

,

and 16∆LB
, where λ is the wavelength. In the runs of λ = 12∆LB

, the number of

cells in the base level is set as Nx × Ny = 96 × 64 that is compatible with the cyclic

boundary conditions in this case. Energy is averaged over the base level cells. The

solid, dashed, and dotted lines denote the runs without the AMR, with the AMR but

not including the particle splitting, and including both the AMR and particle splitting,

respectively. The thick lines represent the theoretical profiles of the growth rate de-

scribed as γ = πω2
pe/2n0k v(∂f0/∂v)v=ω/k, which is deduced from the linear analysis of

the Landau resonance. Here, n0 is the plasma number density averaged over the entire

simulation area, k is the wavenumber, ω is the angular frequency, and f0 is the back-

ground part of the electron distribution function assumed to be Maxwellian. We find

that each simulation result provides a good fit to the theoretical profile at the stage of
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Figure 2.4: Time evolution of the field energy of the Langmuir wave Ex, normalized
by the initial values. We examined three cases of wavelength λ = 8∆LB

, 12∆LB
, and

16∆LB
. These energies are averaged over the base level cells. The thick lines denote

the theoretical profiles deduced from the linear analysis of the Landau resonance. The
solid, dashed, and dotted lines represent the runs without the AMR, with the AMR but
not including the particle splitting, and including both the AMR and particle splitting
algorithms, respectively.

the linear evolution. We also find that the results of ’With AMR’ and ’With AMR &

Particle splitting’ runs are in good agreement with ’Without AMR’ run for each wave-

length. We can see a little discrepancy at the nonlinear stage of the case λ = 8∆LB
.

This is thought to arise from the difference in noise distribution due to thermal plasma

and can be affected by the short wave reflections at the boundaries of the refined region.

However, the discrepancy is not essential because physical phenomena we try to under-

stand using PIC codes should have much larger amplitudes compared with the noise

level. The effects of the wave reflections at the boundaries are described in detail in the

next subsection.

2.3.2 Wave Reflections at the Boundaries of the Refined Regions

One of the issues when we combine the PIC and AMR techniques is wave reflections

at the boundaries surrounding the refined regions. Wave dispersion relations in the

framework using finite-sized particles are different from those in the system using the

actual point particles, and dependent on the cloud sizes, that is, the grid spacings in our

code (Birdsall and Langdon, 1991). Thus if a wave in a coarse cell region propagates

into a refined region or vice versa, the inconsistency in the wave dispersions between
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Figure 2.5: (a) Wave spectral density of Ex in the ω − k space for the ’With AMR &
Particle splitting’ run in the case of λ = 32∆LB

, in which the Landau resonance between
the Langmuir wave and the background electrons is negligible. (b) Difference in wave
spectral density between the runs of ’With AMR & Particle splitting’ and ’Without
AMR’. The wave lengths are again λ = 32∆LB

.

the hierarchical cell layers can cause wave reflections at the boundary. In order to check

whether the reflections are significant, we test again the Langmuir waves that propagate

across the boundaries. The initial settings of the hierarchical cells and plasma condition

are the same as those in the previous subsection. In order to avoid wave damping due

to the Landau resonance, we examine the relatively long wavelength, λ = 32∆LB
, of

which the phase velocity is much larger than the electron thermal velocity, so that the

resonance between the Langmuir waves and background electrons is very weak.

In Figure 2.5(a), the wave spectral density of Ex in the ω − k space is shown for

the run including the AMR and particle splitting processes. Strong peak that arises at

(k, ω) � (20λ−1
e , ωpe) represents the normal Langmuir wave initially loaded. If the wave

reflects at the boundaries of the refined region, the reflected wave should have strong

peak at (k, ω) � (−20λ−1
e , ωpe). However, such a peak is not shown in Figure 2.5(a).

The difference in wave spectral density between the ’With AMR & Particle splitting’

and ’Without AMR’ runs is described in Figure 2.5(b). This difference is thought to

represent any wave modulation caused by the presence of the refined cells. However, the

scale of colour contour in Figure 2.5(b) is two order smaller than that in Figure 2.5(a),

which indicates that the modulations including the wave reflections at the boundaries

are very small, if any, compared with the source wave amplitude and can be masked by

the thermal fluctuations.
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2.3.3 Nonlinear Evolution of the Plasma Sheet

In this subsection, we show the electron dynamics that evolves nonlinearly from the

initial plasma sheet. We use the Harris-type current sheet (Harris, 1962) as an initial

condition, which is given as Bx(z) = −B0 tanh(z/λ), where λ is the half width of the

initial plasma sheet. We set as λ = 0.5λi0, where λi0 is the ion inertial length defined

by the initial plasma sheet density, nps. In addition to the equilibrium, we put a small

perturbation of the form,

Bxp(x, z) = −2δ/λ cos(2πx/lx) sech2(z/λ) tanh(z/λ)
Bzp(x, z) = 2πδ/lx sin(2πx/lx) sech2(z/λ),

(2.21)

where δ is given as δ = 0.03B0λi0 in the current case, so that the initial value of the

reconnected magnetic field defined by ψ ≡ ∫ lx
0

|Bz(x, z = 0)|dx is only 0.12B0λi0, where

lx is the system size in the x direction. Furthermore, we add the background plasma such

as nb = nb0 tanh2(z/λ) in order to describe the lobe plasma in the Earth magnetotail.

Here, nb0 is the asymptotic lobe density and nb0 = 0.044nps is loaded in the current

runs. We do not give any perturbation in the initial current density consistent with

the initial field perturbation. However, once the simulation starts, the initial current

profile is quickly modified to adjust the field perturbation. As a result, a thinner current

sheet is formed around the center of the simulation area, so that the tearing instability

selectively develops therein. The system size is lx × lz = 15.4λi0 × 15.4λi0, we assume

the periodic boundary in the x direction and the conducting wall in the z direction, that

is, the normal component of the electric field (Ez) and the tangential components of the

magnetic field (Bx, By) has no gradients and the charge and current densities are vanished

at the z boundaries. The initial plasma condition is mi/me = 100, Ti,ps/Te,ps = 8.0,

Ti,lobe/Te,lobe = 1.0, Te,lobe/Te,ps = 1.0, and c/vth,e = 5.0, where Ts,ps and Ts,lobe are the

temperatures of the species s at the central plasma sheet and the lobe region, respectively.

Time step is ∆tωci = 8.0 × 10−4 for all particles and refined regions in order to satisfy

the Courant condition on the level LD cells, where ωci = eB0/mi is the ion cyclotron

frequency in the asymptotic lobe region. The cell shape is assumed to be square in the

current runs.

We examine three runs for comparison: ’Without AMR’, ’With AMR’, and ’With

AMR & Particle splitting’ runs. Table I shows information on these three runs, showing

whether the AMR or particle splitting algorithms are used, the base level (LB), the

dynamic range level (LD), the number of cells, and the number of particles. In the

’Without AMR’ run, the whole simulation area is initially covered only by the fine cells

with level L = 10 and the number of particles is large enough to suppress the numerical

noise even in the fine cells. The numbers of cells and particles are not changed during
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Table I: Simulation information.

Run AMR
Particle
splitting

LB LD
Total number
of cells

Total number
of particles

Without AMR No No 10 10 1.0 × 106 2.2 × 107

With AMR Yes No 7 10 8.4 × 104 a 2.2 × 107

With AMR &
Particle splitting

Yes Yes 7 10 9.1 × 104 a 4.8 × 106 a

aAveraged value over the run.

the run, so that we assume results of the ’Without AMR’ run are identical with those in

conventional PIC simulations. In the ’With AMR’ run, the AMR processes are included

but the particle splitting is not implemented. Thus the number of cells is greatly reduced

according to the refinement condition described later, but the number of particles is the

same as the ’Without AMR’ run. Finally, the ’With AMR & Particle splitting’ run

includes both the AMR and particle splitting processes, so that the numbers of cells

and particles are reduced and changed dynamically in association with the evolution of

the plasma sheet. The refinement condition is defined by three physical values. The

first is the local electron Debye length, λDe = vth,e/
√

2ωpe, which is required to avoid a

numerical heating of local plasma, where ωpe is the electron plasma frequency. We use the

initial value of vth,e for calculation of λDe, because electrons are expected to be heated in

the region where the electron dynamics is important, that is, we use the minimum value

of λDe. The second is the out-of-plane electron flow velocity (Vey), because the inertial

term in the generalized Ohm’s law gets dominant in the region where the electron flow is

strong, so that the dissipation of the magnetic field becomes strong and higher resolution

is required. The third is the in-plane electron current density (jexz =
√
j2
ex + j2

ez), which

is required because strong currents can excite microinstabilities so that high resolution

is needed (e.g., Fujimoto and Machida, 2003). In each time step, if λDe, Vey, and jexz

calculated at the center of a cell satisfy the condition, ∆L ≥ 2.0λDe or Vey > 2.0VA or

jexz > 0.5enpsVA, the cell is subdivided and four child cells are produced, otherwise, the

child cells are removed if any. Here, VA = B0/
√
µ0npsmi is the Alfvén velocity, and µ0

is the magnetic permeability in vacuum. The process begins from the base level cells

and proceed up to the level LD − 1 cells. However, for the level LD − 1 cells we do not

impose the criterion on λDe in order to avoid making the level LD cell region patchy.

The particle splitting is performed only for the background particles with level except

for LD in the present runs. The particle coalescence algorithm is also implemented for

the background particles once in a few hundred time steps, but we never choose particles

in the level LD cells to avoid the numerical errors in physically important regions.
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Time evolutions of the reconnected magnetic flux ψ are shown in Figure 2.6 for the

three runs: the ’Without AMR’ (black solid line), ’With AMR’ (black dashed line), and

’With AMR & Particle splitting’ (black dotted line) runs. We found that, although the

runs with the AMR require slightly more time before the onsets of fast reconnection

occur, each run has the almost identical gradient so the same reconnection rate after

the onset. Furthermore, the saturation levels for the runs with the AMR are clearly

in agreement with that for the ’Without AMR’ run. Thus we can say that the fast

reconnection processes described in the three runs are physically identical, so that the

adaptation of the AMR and particle splitting algorithms to the conventional PIC codes is

successful. We think that the discrepancy of the onset time is caused by the difference in

the noise level around the central current sheet at the initial stage in each run. Actually

the initial cell size around the central current sheet in the runs with the AMR is twice

of that in the ’Without AMR’ run, because we do not impose the criterion on λDe for

the level LD − 1 cells. Thus the number of particles per cell is increased four times in

the former, which indicates that the initial noise level around the central current sheet is

lower in the runs with the AMR. In order to make sure whether this reasoning is correct

or not, we also examined a simulation which imposes the refinement criterion on λDe for

the level LD − 1 cells. In this case, the criterion on λDe is given as ∆L ≥ 1.4λDe, instead

of ∆L ≥ 2.0λDe, only for the level L = LD − 1 cells to avoid the patchy refined regions

with level LD. The results for two cases are shown in Figure 2.6. One describes the

run using only the AMR technique (red dashed line) and the other shows that using the

AMR and particle splitting techniques (red dotted line). It is found that these two runs

are in good agreement with the run without the AMR, which indicates that the initial

noise level around the central plasma sheet is very crucial to determine the time when

the onsets of magnetic reconnection occur. Indeed, it is very difficult to discuss the time

scale in which magnetic reconnection grows from noise to a significant size, because it is

strongly dependent not only on the initial noise level but also on many other conditions

specific to the system (e.g., Shay et al., 2004). Thus we do not treat such a problem

in this paper. We only compare the description of fast reconnection, which allows us to

start simulations with coarser cells around the central plasma sheet.

Efficiency of our code is measured by the elapsed time to complete each run, which

is presented in Figure 2.7. Our code including both the AMR and particle splitting

algorithms is shown clearly to be very efficient compared with the conventional PIC

code without the AMR. This efficiency is achieved by reducing the numbers of cells and

particles greatly (see Table I).

Figure 2.8 shows the evolution of the out-of-plane current density (Jy) for the run in-
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Figure 2.6: Time evolutions of the reconnected magnetic flux defined as ψ ≡∫ lx
0

|Bz(x, z = 0)| dx, where lx is the system size in the x direction. The black solid
line shows the result of the non-AMR run, where the whole simulation area is covered by
fine cells having enough background particles, while the black dashed line denotes the
run using only the AMR technique so that the number of particles is the same as in the
non-AMR run. The black dotted line is the result including both the AMR and parti-
cle splitting algorithms, so that the number of background particles is greatly reduced
compared with that in the former two cases. In addition to them, two runs in which the
refinement criterion on λDe is used also at the LD − 1 level are plotted in red lines.
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Figure 2.7: Elapsed time to complete simulations for the cases of ’Without AMR’, ’With
AMR’, and ’With AMR & Particle splitting’ runs, which correspond to the solid, dashed,
and dotted lines in Figure 2.6, respectively. Each run has the same time steps. ’With
AMR & Particle splitting’ run is faster than ’Without AMR’ and ’With AMR’ runs by
a factor of 5.0 and 4.1, respectively.
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cluding the AMR and particle splitting algorithms. A strong thin current sheet is formed

in the vicinity of the X-line (tωci = 14.72) and then fast reconnection occurs (see Figure

2.6). After the initially loaded plasma in the current sheet is carried away from the

central region, the background lobe plasma enters the diffusion region and quasi-steady

electron diffusion region is produced (tωci = 17.92, 20.48). In the electron diffusion re-

gion, electrons are unmagnetized from the ambient magnetic field, and conduct the me-

andering motions with acceleration due to the out-of-plane electric field, which generate

a double-peaked current sheet therein as clearly shown in the figure. Similar properties

are described also in other full particle simulations on magnetic reconnection (e.g., Shay

et al., 2001; Pritchett, 2001; Hoshino et al., 2001b). The hierarchical cell distributions

in association with the current sheet evolution are shown in the right-hand column of

Figure 2.8. We find that the finest cells are only distributed around the diffusion region,

separatrices extending from the X-line, and plasmoid, where the electron kinetic effects

are expected to be important.

Figure 2.9 displays the profiles of (a) the number density of electrons (ne), (b) the out-

of-plane current density (Jy), (c) the inflow electron velocity (Vez) and E×B drift velocity

(dashed line), and (d) the out-of-plane electric field (Ey), along the x/λi0 = 7.9 axis at

the time tωci = 17.92 for the run including the AMR and particle splitting algorithms.

The electron diffusion region can be defined as an area where the electron bulk velocity

is inconsistent with the local E ×B drift velocity. Thus the area from z/λi0 = −0.34 to

0.34 is the electron diffusion region in this case. The double-peaked profiles of ne and

Jy inside the electron diffusion region are also shown in Figure 2.9a and b. The peak

separation is estimated at 0.3λi0, which is approximately same as the electron inertial

length defined by the electron number density averaged within the electron diffusion

region, ne/nps � 0.071. Shay et al. (2001) has constructed a model around the electron

diffusion region, in which vez at the edge of the electron diffusion region and Ey within

the region are given by vez ∼ Bd/µ0enel and Ey ∼ −B2
d/µ0enel respectively, where Bd

is the x component of the magnetic field at the edge of the electron diffusion region

and l is the length of the region along the x axis. When we estimate l, we assume that

electrons continue to be accelerated along x in the electron diffusion region, so that the

electron bulk velocity Vex should be maximized at the edge of the region. In the current

case, Bd/B0 � 0.29 and l/λi0 � 2.0 are estimated from our simulation results, so that

vez/VA � 2.1 and Ey/VAB0 � −0.61 are derived, which are approximately consistent

with our results described in Figure 2.9c and d. Thus the electron dynamics described in

the run including the AMR and particle splitting algorithms is in good agreement with

the conventional model.
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Figure 2.8: Example of the evolution of the hierarchical cell distribution associated with
the current sheet evolution for the run with the AMR and particle splitting processes.
Magnetic field and current density (color-coded) evolutions are shown in the left-hand
column and the hierarchical cells at the times corresponding to them are described in
the right-hand column. Finest cells are only distributed around the diffusion region,
the separatrices extending from the X-line, and the plasmoid, where the electron kinetic
effects are expected to be important.
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2.4 Summary and Discussion

We have described a new electromagnetic full particle code with the AMR and parti-

cle splitting algorithms. The AMR technique subdivides and removes cells dynamically

in accordance with the refinement criteria and enhances the spatial resolution. On the

other hand, the particle splitting algorithm divides particles that locate in finer cells,

conserving the ratio of mass to charge, the total momentum, energy, and distribution

function of particles, and the moments on grids. The particle splitting is indispensable

for adapting the AMR to the electromagnetic particle codes, because the numerical noise

increases on the subdivided cells due to the decrease in the number of particles per cell,

especially around the X-line formed in association with magnetic reconnection (Fujimoto

and Machida, 2005a).

We conduct several test simulations and compare three runs without the AMR, with

the AMR, and with the AMR and particle splitting. Test simulations on the propagation

of the Langmuir waves indicate that the AMR and particle splitting algorithms are

successfully applied to the conventional PIC codes, and we have found that the wave

reflections at the boundaries of the refined regions are not essential. The nonlinear

evolution of the Harris-type current sheet and the electron dynamics around the X-line

using our AMR code are basically the same as those in other reconnection simulations.

However, the numbers of cells and particles are greatly reduced in the run including

the AMR and particle splitting algorithms, so that the time to complete the simulation

is considerably shortened. Thus we conclude that we have realized effectively high-

resolution simulations on the evolution of the current sheet by the use of the AMR

technique and particle splitting algorithm. Our code enables us to conduct large-scale

particle simulations on magnetic reconnection in a wide range of the order 104 – 105.

Our next challenge is a massively parallel computation for the AMR code using

several computational nodes. Our code at the current version is parallelized only within

a node of shared memory processors using OpenMP. It is worth mentioning that the

accumulation of the charge and current densities onto each cell corner is parallelized

by preparing temporal lists of charge and current densities for each processor. In other

words, each processor has private lists of charge and current densities, and assigns particle

to the lists independently of the other processors. After a sweep of the particle loop, the

charge and current densities assigned to each processor are summed up respectively and

substituted into the shared lists. This procedure is effectively parallelized at the expense

of the computational memory. Difficulties in parallelizing our code arise mainly from

the Poisson solver to calculate δφ by equation (2.15). The relaxation methods as used

in the code are not adequate to a parallel computing. This is conceptually because a
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global distribution of the source field contributes to each local potential, and technically

because the iteration loop repeated until the residual error becomes small enough must

be carried out sequentially. In order to avoid solving the Poisson equation, we can use

the charge conservation method for example, in which the current density is determined

directly from knowledge of charge motion so as to satisfy the charge continuity equation

(e.g., Villasenor and Buneman, 1992). The improved version of our code will be discussed

in a separate article.



CHAPTER 3

Time Evolutions of the Electron
Diffusion Region and the
Reconnection Rate in Large and
Fully Kinetic System

3.1 Introduction

Magnetic reconnection is widely believed to play an important role in the magne-

tospheric substorm and solar flares as a fast conversion process of the magnetic energy

to plasma kinetic and thermal energies. In reconnection processes, the ideal magneto-

hydrodynamic (MHD) condition breaks down in the diffusion region arising around a

magnetic X-line, where dissipation processes of the magnetic field are significant (Va-

syliunas, 1975). In a sufficiently collisional plasma, the resistive MHD theory (Sweet,

1958; Parker, 1963; Petschek, 1964) is valid for describing the diffusion region by pa-

rameterizing effects of the classical Coulomb collisions (Spitzer, 1962). However, in the

collisionless plasma as seen in the Earth magnetosphere, the magnetic diffusion due to

the classical resistivity is too small to drive fast reconnection. In such a system, we need

to replace the standard Ohm’s law in the resistive MHD by the generalized Ohm’s law

written as

E + V × B = −me

e
(V e · ∇)V e − 1

ne
∇ · P e +

1

ne
J × B, (3.1)

where E is the electric field, B the magnetic field, J the current density, n the plasma

number density, V e the electron flow velocity, P e the electron pressure tensor, and me

the electron mass. The first and second terms in the right-hand side arise from electron

inertial effects, and the scale sizes are evaluated as the electron inertial length λe and the

electron gyroradius λge, respectively. The last term represents the decoupling between
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ions and electrons, so-called Hall effects, and has a scale size of the ion inertial length

λi. When the scale length of gradient is much larger than any of these characteristic

lengths, the frozen-in condition holds.

In two-fluid system consisting of ions and electrons, the inflowing ions can be decou-

pled from the ambient magnetic field when they approach the neutral sheet as close as

λi. Thus the region within λi is the diffusion region where the frozen-in condition breaks

down. Electrons, however, still remain magnetized at this distance, since their inertia

is much smaller than those of ions. Instead, their frozen-in constraint can break down

at the distance comparable with the local gyroradius λge, within which electrons are ex-

pected to perform the meandering motions (e.g., Pei et al., 2001). This non-magnetized

region for electrons is called the electron diffusion region. Therefore the diffusion region

in the two-fluid system develops two-scale structure, embedding the electron diffusion

region within the ion-scale diffusion region.

Inside the diffusion region but outside the electron diffusion region, ions are decoupled

from the ambient magnetic field but electrons are still frozen-in to the field and continue

to move with the E × B drift motion toward the current sheet. This relative motion

between ions and electrons produces currents in the vicinity of the magnetic X-line,

forming the Hall current system (Sonnerup, 1979; Terasawa, 1983). On the other hand,

the kinetic behavior of electrons becomes important in the electron diffusion region.

It has been revealed by using two-dimensional kinetic simulations that the dissipation

process in the electron diffusion region is supported by the electron inertia term and

the gradient term of the electron pressure tensor in the generalized Ohm’s law (3.1)

(Cai and Lee, 1997; Hesse and Winske, 1998; Kuznetsova et al., 1998; Hesse et al., 1999;

Swisdak et al., 2005). Though reconnecting of the magnetic field actually proceeds in

this region, it has been suggested that the electron dynamics should have little or no

effect on the reconnection rate (Biskamp et al., 1997; Birn et al., 2001). Instead, ion

dynamics can control the reconnection processes so the electron-scale structure. They

conclude that a high reconnection rate results from the Hall term in the generalized

Ohm’s law (3.1), so that the inclusion of the Hall effects is a sufficient condition to

achieve fast reconnection. This indicates that three-dimensional effects arising along the

current sheet would not be essential for obtaining the high reconnection rate (Huba and

Rudakov, 2004). Though recent simulation studies comparing MHD, Hall MHD, hybrid,

and full particle simulations confirmed the importance of the Hall effects, the system did

not reach steady state and the reconnection rate decreased after it reached a peak value

(Shay et al., 2001; Hesse et al., 2001; Pritchett, 2001; Kuznetsova et al., 2001). They

attributed the depression to the periodic system in the direction of the initial magnetic



CHAPTER 3. EVOLUTION OF RECONNECTION RATE IN LARGE SYSTEM 42

field, in which compressional effects in the magnetic islands could affect the reconnection

processes. One of the solutions in order to suppress the boundary effects is to perform

the simulations in a large system so that the periodicity is negligible therein.

Such large-scale simulations including the Hall effects were examined using a two-

dimensional hybrid code (Shay et al, 1999) and a two-dimensional two-fluid code (Shay

et al., 2004). Both results also indicate the importance of the Hall effects for fast recon-

nection and show a quasi-steady reconnection with the reconnection rate of the order

of 0.1VA0B0, where VA0 and B0 are, respectively, the Alfvén velocity and the magnetic

field defined in the asymptotic lobe region, and the reconnection rate is estimated by

the electric field strength along the X-line. However, Karimabadi et al. (2004) recently

compared two different hybrid simulations with and without the Hall term under an

open boundary condition, and demonstrated that ion kinetic behavior alone could give

rise to fast reconnection even in the absence of the Hall effects. Thus the Hall effects

may not be necessarily required for fast reconnection.

The present work shows results from 2-1/2 dimensional full particle simulations in

a large system, in which both ions and electrons are treated as superparticles. The

purpose of this study is to see a long evolution of the diffusion region in a fully kinetic

system. The main concern is how the ion dynamics affects the electron-scale structure

so the reconnection processes. It is still difficult to conduct large-scale simulations using

conventional particle-in-cell (PIC) codes because of limited computer resources. Thus

we employed the adaptive mesh refinement (AMR) technique and the particle splitting

algorithm to the conventional PIC code (Fujimoto and Machida, 2005b). Adoption of

these techniques enables us to perform effectively high-resolution simulations including

kinetic processes of magnetic reconnection.

3.2 Simulation Model

The present study employs a 2-1/2 dimensional electromagnetic PIC code with

the AMR technique and the particle splitting algorithm, which has been described by

Fujimoto and Machida (2005b). The AMR technique subdivides and removes computing

cells dynamically in accordance with a refinement criterion and quite effective to achieve

high-resolution simulations of phenomena that locally include micro-scale processes. In

our code, the spatial resolution is increased by introducing finer cells hierarchically onto

the uniform base cells that cover the entire simulation area. If a base cell is refined, four

child cells that have half the size of the base cell are generated. These child cells can be

also refined in turn and finer cells are produced, and so on. One of the main problems in
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developing the electromagnetic PIC codes using the AMR technique is the decrease in

the number of particles per cell in the refined region. In order to solve this problem, we

subdivide particles residing in the subdivided cells and control the number of particles

per cell. We employ the particle splitting algorithm developed by Lapenta (2002), in

which the moments on each grid (the charge and current densities), the total charge,

mass, momentum, and energy of particles, and the distribution function of particles are

retained between before and after the particle splitting. Each cell is needed to have

information of the parent, child, and neighboring cells, and the particles residing in

the cell. The communication between cells or between a cell and the particles in the

cell is supported by a set of pointers, constructing the fully threaded tree structure

(Khokhlov, 1998). A refinement level L in the hierarchical cell structure is defined by

using the cell size of the level (∆L) as L ≡ log2(lz/∆L), where lz is the vertical size of

the two-dimensional simulation area. We use only cells with integer level. More detailed

description on our code is shown in Fujimoto and Machida (2005b).

The refinement condition in the current study is defined by three physical values. The

first is the local electron Debye length, λDe = vth,e/
√

2ωpe, which is required to avoid

a numerical heating of local plasma, where vth,e =
√

2Te/me is the electron thermal

velocity (Te and me are the temperature and mass of electrons, respectively), and ωpe

is the electron plasma frequency. We use the initial value of vth,e for calculation of λDe,

because electrons are expected to be heated in the region where the electron dynamics

is important, that is, we use the minimum value of λDe. The second is the out-of-plane

electron flow velocity (Vey), because the inertial term (the first term of the right-hand

side) in the generalized Ohm’s law (3.1) becomes dominant in the region where the

electron flow is strong, so that the dissipation of the magnetic field becomes strong and

higher resolution is required. The third is the in-plane electron current density (Jexz =√
J2

ex + J2
ez), which is required because intense currents can excite microinstabilities so

that electron-scale waves are expected to arise. In each time step, if λDe, Vey, and Jexz

calculated at the center of a cell satisfy the condition, ∆L > 2.0λDe or Vey > 2.0VA or

Jexz > 0.5enpsVA, the cell is subdivided and four child cells are produced, otherwise,

the child cells are removed if any. Here, VA is the Alfvén velocity defined by the initial

lobe field (B0) and plasma sheet density (nps), and e is the electron charge. The particle

splitting is also performed in each time step, but this is done only for the background

particles whose initial distribution is described later. We carry out not only particle

splitting but also particle coalescence in order to reduce the number of particles in

the unrefined region. The particle coalescence algorithm is implemented once in a few

hundred time steps for the background particles. In both the particle splitting and
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coalescence algorithms, we never choose particles in the most refined (finest) cells to avoid

numerical errors in physically important regions. In the present study, the hierarchical

cell structure consists of four cell layers.

The initial magnetic field configuration is given as Bx(z) = −B0 tanh(z/λ), and the

corresponding density is n(z) = nps sech2(z/λ), where λ is the half width of the initial

plasma sheet and set as λ = 0.5λi0 (λi0 is the ion inertial length defined by nps). In

addition to the equilibrium, a small perturbation is superposed in the form

Bxp(x, z) = 2a0/λ sech2((x− lx/2)/L′) sech2(z/λ) tanh(z/λ)

Bzp(x, z) = −2a0/L
′ sech2((x− lx/2)/L′) sech2(z/λ) tanh((x− lx/2)/L′),

(3.2)

where, lx is the horizontal length of the simulation area, and a0 and L′ provide the

amplitude and horizontal size of the perturbation, respectively. In the present study,

a0 = 0.15B0λi0, L
′ = 3.8λi0, and lx × lz = 122.9λi0 ×30.7λi0 are chosen, unless otherwise

mentioned. Furthermore, the background plasma is loaded as nb(z) = nb0 tanh2(z/λ)

and nb0 = 0.044nps in order to describe the lobe plasma in the magnetospheric tail.

Although there appears a weak pressure imbalance due to this background profile, it is

quickly justified without any significant modification of the current sheet structure. Once

the simulation starts, the initial plasma sheet density and current profiles are quickly

modified to adjust the field perturbation. As a result, a thinner current sheet is formed

near the center of the simulation area (x = lx/2, z = 0), so that the tearing instability

selectively develops therein. The cell size is ∆LB
= 0.12λi0 for the coarsest cells and

∆LD
= 0.015λi0 for the finest cells, and the time step is ∆tωci = 8.0 × 10−4 for all

particles and refined regions in order to satisfy the Courant condition on the finest cells,

where ωci is the ion cyclotron frequency defined by the lobe field (B0). The initial plasma

condition is mi/me = 100, Ti,ps/Te,ps = 8.0, Ti,lobe/Te,lobe = 1.0, Te,lobe/Te,ps = 1.0, unless

otherwise mentioned, and c/VA = 16.7, where Ts,ps and Ts,lobe are the temperatures of

the species s at the central plasma sheet and the magnetic lobe, respectively, and c is

velocity of light. We assume the periodic boundary in the x direction and the conducting

wall in the z direction.

3.3 Results

3.3.1 Time Evolution of the Reconnection Rate

The evolution of the reconnected magnetic flux, ψ =
∫ lx/2

0
|Bz(x, z = 0)| dx, is plotted

in Figure 3.1a. Here, it is assumed that the X-line is formed at the center of the simulation

area (x = lx/2, z = 0). It increases very slowly in the first half of the simulation time, but
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Figure 3.1: Time evolutions of (a) the reconnected magnetic flux, (b) the out-of-plane
electric field at the center of the simulation area (x = lx/2, z = 0).
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develops at drastically high rate after tωci ≈ 12.5, so that fast reconnection is switched

on. The reconnection rate should be given by the instantaneous growth rate of ψ, which

is derived from Faraday’s law as ∂ψ/∂t = −Ey(x = lx/2, z = 0), which expresses the

electric field imposed along the X-line. Figure 3.1b shows the time evolution of the

out-of-plane electric field at the center of the simulation area. The reconnection rate

develops associated with the evolution of the magnetic reconnection until it reaches a

peak at tωci ≈ 15, and a fast reconnection with |Ey| ∼ 0.7VAB0 = 0.15VA0B0 is achieved.

However, after then it starts to decrease and fall to nearly the half of the peak value at

the end of the simulation. This time history is similar to those obtained in other particle

simulations having smaller simulation areas, in which the periodicity of the system has

tended to affect the reconnection rate and slow down reconnection processes (Shay et

al., 2001; Hesse et al., 2001; Pritchett, 2001; Kuznetsova et al., 2001). In the present

run, however, the simulation area is large enough to describe longer time evolutions of

reconnection without the effects of the periodic boundaries. Actually the plasma density

at the edge of the simulation area (x = 0, z = 0), which is initially set as n = 1.00nps,

is only slightly increased to n = 1.04nps at the end of the simulation. This indicates

that the compressive effects in the magnetic island as expected in the periodic system

are mostly negligible in the present large system.

3.3.2 Structure Change Around the Electron Diffusion Region

The density profiles along the z direction at x = lx/2 are shown in Figure 3.2b for

ions (red solid lines) and electrons (blue solid lines) at two different times: tωci = 12.8

(left) and 16.7 (right). At tωci = 12.8, both ion and electron density profiles have peaks

at z = 0 that are reminiscent of the initial equilibrium profiles. On the other hand, at

tωci = 16.7, electrons have still a peak at z = 0 while ion peaks appear at the flanks of

the electron peak and a density hole is formed at z = 0. The double-peaked structure

in the ion density profile as seen at tωci = 16.7 indicates that most ions experience

meandering motions near the X-line, staying long around the turning points and passing

fast around z = 0. The red dashed lines in Figure 3.2a denote the density profiles of the

background cold ions, which are initially loaded only in the lobe region. Its profile at

tωci = 12.8 is not yet changed from the initial profile in essence. However, as magnetic

reconnection proceeds, the background ions approach toward the X-line and start the

meandering motions. It is found that the double-peaked structure at tωci = 16.7 is mainly

produced by the background ions meandering around the X-line. Because the hot ions

initially loaded in the current sheet have large velocity in the out-of-plane direction in

order to produce the current supporting the initial magnetic field profile, they can easily
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Figure 3.2: Comparison of structures along the z direction through the center of the
simulation area (x = lx/2, z = 0) at two different times: tωci = 12.8 (left) and 16.7
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The red dashed lines represent the contribution from the background cold ions. (b) The
electric field along the z direction. (c) The out-of-plane current densities (black solid
lines), which are calculated by summing up the ion and electron current densities (red
and blue lines, respectively).

escape from the diffusion region due to the Lorentz force before their meandering motions

become dominant. Thus, as the density of the background cold ions dominates that of

the plasma sheet ions in the vicinity of the X-line, the double-peaked structure becomes

dominant. This structure change occurs around tωci = 15 in the present run.

The difference in density peak position between ions and electrons are mainly caused

by their inertia difference, and give rise to a strong polarization electric field Ez directing

toward the neutral sheet in the electron inflow region. Its profiles along the z direction are

shown in Figure 3.2b, and the two-dimensional snapshots are also given in Figure 3.3.

We find that the meandering motions of the background ions enhance the amplitude

of Ez and broaden its imposed region not only in the z direction but also in the x

direction around the X-line. The time evolution of the electric field directing toward the

neutral sheet Ez = −z/|z|Ez , averaged over the electron inflow region (lx/2 − 0.2λi0 ≤
x ≤ lx/2 + 0.2λi0, 0.25λi0 ≤ |z| ≤ 0.5λi0), is plotted in Figure 3.4. Ez develops after

tωci ≈ 13 as magnetic reconnection proceeds. Especially, its growth rate is enhanced

after tωci ≈ 15, indicating that the background ions carrying out the meandering motions

become dominant around the X-line. Figure 3.2c shows the comparison of the out-of-

plane current density profiles (black lines), which are calculated by summing up the ion

and electron current densities (denoted by red and blue lines, respectively). We find that
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the polarization electric field Ez forces the inflow electrons to execute the E × B drift

toward the out-of-plane direction and enhances the out-of-plane electron current density

in the electron inflow region.

In order to see the role of the enhanced electron current in the electron inflow region,

we plot in Figure 3.5 the time evolution of each term in the right-hand side of Ampère’s

law, ∂Ey/∂t = −Jy/ε0 + c2(∂Bx/∂z− ∂Bz/∂x), averaged over the electron inflow region

(lx/2 − 0.2λi0 ≤ x ≤ lx/2 + 0.2λi0, 0.25λi0 ≤ |z| ≤ 0.5λi0). The term contributed by

the electron current (blue solid line) decreases until tωci ≈ 13.5, which results from the

thinning of the electron current sheet. Then this term, however, increases again due to

the enhancement of the out-of-plane electron drift caused by the polarization electric

field. The important point in this figure is that the contribution from the x-gradient

of the magnetic field Bz also has a peak at tωci ≈ 13.5. The absolute value of ∂Bz/∂x

in the electron inflow region reflects a curvature of the magnetic field lines, which is

expressed as κ � |Bx/B
2 ∂Bz/∂x| when |Bz/B| << 1, where B =

√
B2

x +B2
z . Since Bx

(not shown) is almost constant after tωci ≈ 14, κ is mostly proportional to |∂Bz/∂x| at

its declining phase. Therefore it is found that the curvature of the magnetic field lines

decreases as the out-of-plane electron current in the electron inflow region is enhanced.

This means that the magnetic field lines in the upstream region tends to be parallel to

the x direction, leading to the extension of the electron meandering region along the x

direction. Note that the left-hand side of Ampère’s law (∂Ey/∂t, not shown) is mostly

zero within the present simulation time in comparison with each term in the right-hand

side.

Figure 3.6 shows the snapshots of the out-of-plane electron velocity Vey with the

magnetic field lines (white solid lines) around the X-line. The strong electron velocity

seen near the center of the simulation area indicates that electrons are accelerated by

Ey and perform the meandering motions. Thus this region is mostly interpreted as the

electron diffusion region. As the curvature of the magnetic field lines decreases in the

electron inflow region, the electron meandering region so the electron diffusion region

tends to extend along the x direction. This is also evident in Figure 3.7, which describes

time evolutions of (a) the length l, (b) the width δ, and (c) the aspect ratio δ/l of the

electron diffusion region. The length l and the width δ of the electron diffusion region

are properly determined from the simulation results at a give time. The electron dif-

fusion region should be the region where the dissipation process are mainly supported

by the electron dynamics, that is, the region where electrons are accelerated by the in-

ductive electric field Ey and experience the meandering/Speiser motions (Speiser, 1965).

Thus the downstream edge of the electron diffusion region is determined by the location
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Figure 3.3: Snapshots of the electric field along the z direction at tωci = 12.8, 14.8, and
16.7. Magnetic field lines (white solid lines) are superposed on each panel.
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where the electron outflow velocity along the x axis reaches a peak value. Outside the

edge, electrons are decelerated and the electron flow energy is partly converted to its

thermal energy. On the other hand, the upstream edge of the electron diffusion region

is determined by the turning point of the electron meandering motions. The ampli-

tude of the electron meandering orbit is given by δm = λg(δm), where λg(z) = vth/ωc

is the local Larmor radius of electrons, vth =
√

2Te/me is the electron thermal veloc-

ity, and ωc = −eBx/me is the electron cyclotron frequency. The width δ is defined by

δ = δ+
m + (−δ−m), where δ±m denotes the location of the upstream edge in the ±z region.

The length l of the electron diffusion region increases as time goes on after tωci ≈ 13.5

(Figure 3.7a) when the curvature of the magnetic field lines reaches the peak. Since the

width δ is mostly constant in time (Figure 3.7b), the aspect ratio δ/l decreases after

tωci ≈ 13.5, especially after tωci ≈ 15, so that a long and narrow diffusion region is

formed (Figure 3.7c).

In Figure 3.8, a schematic field structure around the electron diffusion region is

described with the polarization electric field Ez and the out-of-plane current density

Jy. The electric field directing toward the neutral sheet is significant in the shadowed

regions. The out-of-plane current density Jy in the shadowed region is enhanced in the

manner that the polarization electric field Ez forces the inflow electrons to perform the

E ×B drift to the out-of-plane direction and enhances the out-of-plane electron current

density. Since the out-of-plane current density is almost uniform along the upstream

edge of the electron diffusion region, the magnetic field Bz does not appear near the X-

line. Thus the magnetic field lines in the electron inflow region should be parallel to the

upstream edge, so that the curvature of the magnetic field lines is reduced in association

with the enhancement of Jy in the electron inflow region. On the other hand, near the

downstream edge of the shadowed region, Jy has a gradient along the x direction, which

gives rise to the magnetic field fluctuation δBz (dashed arrows in Figure 3.8) and also

reduces the curvature of the magnetic field lines. As a result, the magnetic field lines in

the electron inflow region tend to be parallel to the x axis, leading to the extension of

the electron meandering region so the electron diffusion region along the x direction.

3.3.3 Impact on the Reconnection Rate

We consider here how the structure change of the electron diffusion region affects

the reconnection rate, that is, the electric field along the X-line. Figure 3.9 shows

the flow velocity of electrons along the z direction at x = lx/2. This profile is useful

to understand the electron behavior around the X-line, when the intense polarization

electric field is imposed. The dashed line expresses the E × B drift velocity in the z
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Figure 3.6: Snapshots of the out-of-plane electron flow velocity at tωci = 12.8, 14.8, and
16.7. Magnetic field lines (white solid lines) are superposed on each panel.
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Figure 3.8: Schematic field structure including the polarization electric field Ez and
out-of-plane current around the electron diffusion region. The electric field directing
toward the neutral sheet is significant in the shaded regions. The out-of-plane currents
in the shaded regions produce the magnetic field δBz (dashed arrows) at the edges,
which reduces the curvature of the field lines in the electron inflow region and extends
the electron diffusion region along the x axis.

direction, that is, −Ey/Bx. The E × B drift velocity diverges from the electron flow

velocity at z ≈ ±0.7λi0, thereby the frozen-in condition for electrons breaks down in the

region between z ≈ ±0.7λi0. However, the upstream edges of the electron diffusion region

where meandering electrons turn back to the neutral sheet is located at z ≈ ±0.15λi0 in

our definition. Actually, the strong polarization electric field imposed inside the ion-scale

diffusion region makes the inertial term in the generalized Ohm’s law (3.1) considerably

large and suppresses the electron inflow velocity. In this case, the generalized Ohm’s law

(3.1) can be expressed in the form

Ey + VezBx � −me

e
Vez

∂Vey

∂z
, (3.3)

where Vey � Ez/Bx is a good approximation. Thus we can obtain the electron inflow

velocity

Vez � − 1

1 + ω−1
ce ∂Vey/∂z

Ey

Bx

, (3.4)

where ωce is the local electron cyclotron frequency. We call this velocity the “modified

E × B drift velocity”. This profile is plotted by the dotted line in Figure 3.9. The

modified E×B drift velocity diverges from the electron inflow velocity at z ≈ ±0.15λi0,

which are consistent with the upstream edges of the electron diffusion region.

Assuming that the inflow electrons along the z direction are mostly accelerated toward

the x direction by the magnetic tension in the electron diffusion region, we can obtain



CHAPTER 3. EVOLUTION OF RECONNECTION RATE IN LARGE SYSTEM 55

-3 -2 -1 0 1 2 3

z/λi0

-4

-2

0

2

4

V
ez

/V
A

t=16.7 Vez
-Ey/Bx
-1/(1+1/ωce�Vey
 /�z) Ey/Bx
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tωci = 16.7. Dashed line denotes the E × B drift velocity defined by −Ey/Bx, and
dotted line is a velocity described by −1/(1+1/ωce∂Vey/∂z)Ey/Bx, which expresses the
“modified E × B drift velocity” due to a large Ez.

the approximation

−mene1Ve1Ve2 � B1B2

µ0
, (3.5)

where nej , Vej, and Bj are, respectively, the electron density, velocity, and magnetic

field in the location denoted by j (j = 1 and 2 represent the upstream and downstream

edges of the electron diffusion region, respectively), that is, Ve1 = Vez(x = lx/2, z = δ+
m),

Ve2 = Vex(x = l+, z = 0), B1 = Bx(x = lx/2, z = δ+
m), B2 = Bz(x = l+, z = 0), and l+ is

the location of the right-hand-side edge of the electron diffusion region. The out-of-plane

electric field Ey is assumed to be spatially uniform around the electron diffusion region,

so that

Ey � −V ′
e1B

′
1 � −Ve1B1 − me

e
Ve1

(
∂Vey

∂z

)
1

� Ve2B2, (3.6)

where the prime denotes the location at which the electron inflow velocity diverges from

the E × B drift velocity (−Ey/Bx), that is, V ′
e1 = Vez(x = lx/2, z = 0.7λi0), and

B′
1 = Bx(x = lx/2, z = 0.7λi0) at tωci = 16.7, for example. We further assume V ′

e1 � Ve1,

which implies for the incompressible fluid that all the electrons entering the region where

the frozen-in condition breaks down reach the electron diffusion region defined in the
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present study. From (3.5) and (3.6) using l|Ve1| � δ|Ve2| for continuity, one can derive

Ve2 � −
√
B′

1

B1
VAe, (3.7)

Ey � −δ
l

[
1 +

1

ωce,1

(
∂Vey

∂z

)
1

]3/2

B1VAe, (3.8)

where VAe = B1/
√
µ0ne1me is called the electron Alfvén velocity. Since B′

1/B1 � 1,

it is found that the electron outflow velocity can exceed the electron Alfvén velocity

defined at the upstream edge of the electron diffusion region. The theoretical prediction

of the out-of-plane electric field using (3.8) is plotted as a function of time in Figure 3.10

(dashed line), superposed on the direct measurement from the simulation results (solid

line). This theoretical prediction is calculated from the upstream parameters (ne1, B1,

and (∂Vey/∂z)1) and the size of the electron diffusion region (δ and l) determined by

the simulation results at each given time. It increases as time goes on until it reaches

a peak at tωci ≈ 15 and then starts to drop associated with the reduction of the aspect

ratio (δ/l), that is, with the extension of the electron diffusion region. This profile is

consistent with the simulation results (solid line). The damping rate of Ey after tωci ≈ 15

is slightly different between the simulation results and the theoretical prediction. We

think that this is caused by the underestimation of δ. In our model, we assume that all

the inflow electrons are accelerated toward the x direction only in the electron diffusion

region defined in the present study. However the polarization electric field Ez directing to

the neutral sheet forces the inflow electrons toward the out-of-plane direction, even when

they reside outside the electron diffusion region. Thus the acceleration region should be

wider along the z direction than the electron meandering region, though it is difficult to

correctly determine the effective value of δ.

3.3.4 Comparison With the Case of mi/me = 1

In order to emphasize the role of the polarization electric field caused by the ion

meandering motions around the X-line, we compare the results discussed in the previous

sections with those obtained from the simulations under mi/me = 1, in which the decou-

pling between ions and electrons does not arise, so that the polarization electric field is

eliminated. At the same time, we check the effects of the conducting wall located at the

boundary of the simulation area in the z direction by performing same simulations in

larger system in the z direction. In the runs with mi/me = 1, the temperature ratio in

the initial plasma sheet (Ti,ps/Te,ps) is also set as unity in order to avoid the electrostatic

field arising from the difference in Larmor radius between ions and electrons. The system
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Figure 3.10: Comparison of the time evolutions of the out-of-plane electric field. The
solid line denotes the direct measurement of the simulation results at the center of
the simulation area. The dashed line is the theoretical prediction calculated from the
upstream parameters (ne1, B1, and (∂Vey/∂z)1) and the size of the electron diffusion
region (δ and l) determined by the simulation results.

parameters in the case of mi/me = 1 are ∆LB
= 0.96λi0, ∆LD

= 0.12λi0, ∆tωci = 0.01,

and c/VA = 6.0. The other conditions are the same as the case of mi/me = 100.

We examine several system sizes: lx × lz = 122.9λi0 × 30.7λi0, and 122.9λi0 × 61.4λi0

for the mi/me = 100 runs, and lx × lz = 122.9λi0 × 30.7λi0, 122.9λi0 × 61.4λi0, and

122.9λi0 × 122.9λi0 for the mi/me = 1 runs.

The time evolution of the out-of-plane electric field at the center of the simulation

area (the reconnection rate) is shown in Figure 3.11 for each run. In the case of mi/me =

1, we find that a steady-state reconnection is achieved in larger system, although the

reconnection rate in the smaller system (lx × lz = 122.9λi0 × 30.7λi0) tends to drop

due to the effects of the conducting wall boundary. On the other hand, in the case of

mi/me = 100, the time evolution of the reconnection rate is independent of the system

size, rising until tωci ≈ 15 and then falling down associated with the extension of the

electron diffusion region. These results demonstrate the importance of the polarization

electric field Ez in suppressing the reconnection processes. Another important point

is that the asymptotic reconnection rate in the mi/me = 1 runs (|Ey| ∼ 0.45VAB0 =

0.09VA0B0) is large enough to explain fast dissipative events, even though the Hall effects

are not included. Therefore it is suggested that the Hall effects should not be necessarily

required for fast reconnection. This is well consistent with the results of Karimabadi et

al. (2004)
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Figure 3.11: Comparison of the time evolutions of the out-of-plane electric field at the
center of the simulation area (the reconnection rate). Red lines denote the runs for
mi/me = 100, and black lines the runs for mi/me = 1. Two system sizes are examined
under each mass ratio: lx × lz = 122.9λi0 × 30.7λi0 (solid lines), and 122.9λi0 × 61.4λi0

(dashed lines). Larger system size with lx × lz = 122.9λi0 × 122.9λi0 is also employed
under mi/me = 1 (shown by black dotted line).

3.4 Summary and Discussion

In this paper, we have investigated long time evolutions of the electron diffusion

region embedded in the ion-scale diffusion region and the resulting reconnection rate as-

sociated with magnetic reconnection in a fully kinetic and large system. We performed

2-1/2 dimensional full particle simulations with the adaptive mesh refinement (AMR)

technique and the particle splitting algorithm (Fujimoto and Machida, 2005b). The

adoption of these techniques to the conventional particle-in-cell (PIC) code enables us

to perform effectively high-resolution simulations including kinetic processes of magnetic

reconnection. Previous reconnection studies using full particle simulations in the periodic

system (Shay et al., 2001; Hesse et al., 2001; Pritchett, 2001; Kuznetsova et al., 2001)

achieved fast reconnection, but the system did not reach steady state and the recon-

nection rate decreased after it reached a peak value. This is because the compressional

effects in the magnetic islands affect the reconnection processes in small periodic systems.

The full particle code with the AMR and particle splitting employed in the present study

allows us to take a large system, in which the effects of the periodic boundary hardly

affect the reconnection processes within the present simulation time.

We find that the reconnection rate increases associated with magnetic reconnection

and reaches a peak value large enough for fast reconnection, but then it decreases as

time goes on, even though the periodicity of the system is negligible. The key process
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responsible for slowing magnetic reconnection is the extension of the electron diffusion

region associated with the evolution of the strong polarization electric field Ez imposed

in the electron inflow region. The polarization electric field directing toward the neutral

sheet is caused by the inertia difference between ions and electrons, and enhanced by the

meandering motions of the background ions. Because the hot ions initially loaded in the

Harris-type current sheet have a large velocity in the out-of-plane direction, they can

easily escape from the diffusion region due to the Lorentz force before their meandering

motions become dominant. Thus their impact on the strong Ez is small. The polarization

electric field Ez forces the inflow electrons to move toward the out-of-plane direction by

the E ×B drift and enhances the out-of-plane current density Jy in the electron inflow

region. The role of Jy is to reduce the curvature of the magnetic field lines so that they

are mostly parallel to the x direction near the X-line, in such a way that Jy becomes

uniform along the upstream edge of the electron diffusion region. As a result, the electron

meandering region so the electron diffusion region extends along the x direction.

We performed a Sweet-Parker-like analysis around the electron diffusion region, tak-

ing into account the breakdown of the electron frozen-in condition in the electron inflow

region, and demonstrate that the extension of the electron diffusion region can suppress

the reconnection rate. In order to emphasize the role of the polarization electric field

and the Hall effects, we compare the simulation runs with mi/me = 1 and mi/me = 100.

It is found that (1) a steady-state reconnection is achieved in the mi/me = 1 cases where

the polarization electric field does not appear, different from the mi/me = 100 cases, (2)

a large reconnection rate with |Ey| ∼ 0.09VA0B0 is obtained in the mi/me = 1 runs, even

though they do not include the Hall effects, so that the Hall effects are not necessarily

required for fast reconnection.

The polarization electric field Ez caused by the ion meandering motions has been

seen in previous studies within large systems using hybrid simulations (Shay et al, 1999;

Arzner and Scholer, 2001). However, their systems achieved a quasi-steady reconnection,

different from the present results. This inconsistency is possibly attributed to the absence

of the electron meandering effects in the previous simulations. The damping of the

reconnection rate results from the extension of the electron diffusion region in which

electrons carry out the meandering motions. The electron meandering effects should

be incorporated into the term arising from the nongyrotropic electron pressure of the

generalized Ohm’s law (the second term in the right-hand side of (3.1)) (Cai and Lee,

1997; Hesse and Winske, 1998; Kuznetsova et al., 1998; Hesse et al., 1999; Swisdak et

al., 2005). However, both of the previous studies did not include this term.

A long time evolution of the diffusion region using full particle simulations has been
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Figure 3.12: Distributions in the vx-vy velocity space of ions (crosses) and electrons (open
triangles) at the center of the simulation area at tωci = 14.8.

investigated by Pei et al. (2001) under an open system. Their system also reached a

steady-state reconnection and the structure was mostly unchanged during the simulation

time. Magnetic reconnection in their system is driven by an external electric field,

supplying an external plasma into the system. The reconnection rate in such a driven

system is mainly controlled by the external driving electric field (Sato and Hayashi, 1979;

Pei et al., 2001). Thus the size of the diffusion region should be determined in the manner

that the output of the plasma and magnetic field flux from the system becomes consistent

with the input from the external region. Thus the reconnection processes in the driven

system are essentially different from those in the spontaneous system as employed in the

present study, in which there is no energy input from the external region.

The question that remains is what can support fast reconnection in actual space

plasma after the reconnection rate reaches the peak. In fact, the peak value of the re-

connection rate obtained in the present runs is ∼ 0.7VAB0. If we take B0 ∼ 10 nT and

nps ∼ 0.5 cm−3, we can calculate |Ey| ∼ 2.2 mV/m, which is not unrealistic compared

with observational results (Asano et al., 2004). However, in our model, the reconnec-

tion rate is expected to continue decreasing after the meandering motions due to the

background cold ions have been dominant around the X-line. Thus it is supposed that

other mechanisms that are not included in the model might play an important role in

enhancing the reconnection rate. In the two-dimensional system employed in the present

study, plasma instabilities excited along the y direction are suppressed in principle. Ac-

tually, since electrons in the electron diffusion region can be strongly accelerated toward

the y direction beyond the electron Alfvén velocity defined in the upstream region, a
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large velocity difference between ions and electrons is expected to arise. In Figure 3.12,

distribution in vx − vy space at the center of the simulation area and tωci = 14.8 are

shown for ions (crosses) and electrons (open triangles). The velocity difference between

ions and electrons along the y direction is beyond the thermal spread of the electron

distribution function. In such a condition, the Buneman-type instability can be excited

along the y direction. Indeed, such an instability and its nonlinear structure have been

demonstrated in the three-dimensional system with a strong guide field (Drake et al.,

2003), and can give rise to the anomalous resistivity, so that the reconnection rate (|Ey|)
is enhanced. In order to investigate the role of the Buneman-type instability in the elec-

tron diffusion region, it is necessary to perform a large-scale kinetic simulation in the

three-dimensional system.



CHAPTER 4

A Generation Mechanism of
Electrostatic Waves and Subsequent
Electron Heating in the Plasma
Sheet-Lobe Boundary Region
During Magnetic Reconnection

4.1 Introduction

Magnetic reconnection is widely believed to play an important role in the magne-

tospheric substorm and solar flares as a fast conversion process of the magnetic energy

to kinetic and thermal energy of ions and electrons. In fact, electron heating and ac-

celeration arising during a number of phenomena in space are recognized as signatures

of magnetic reconnection. For example, in the Earth magnetotail, bursts of high energy

electrons have been reported in association with topological change of the near-Earth

field line, so that they have been attributed to magnetic reconnection (Terasawa and

Nishida, 1976; Baker and Stone, 1976). In solar flares, x-ray observations indicate that a

large part of the total energy is released in energetic electrons accelerated via magnetic

reconnection (Lin and Hudson, 1976; Lin et al., 2003). Plasma heating and acceleration

processes in association with magnetic reconnection have been discussed over the last

decades. However, our understanding on the energization mechanisms of electrons still

remains poor.

It is well known that non-Maxwellian electrons selectively heated parallel to the am-

bient magnetic field, having an velocity distribution of the flat-topped form, have been

often observed in the plasma sheet-lobe boundary region located between the magneto-

tail lobe and the plasma sheet in association with magnetic reconnection (Saito et al.,



CHAPTER 4. WAVE AND ELECTRON HEATING DURING RECONNECTION 63

1995; Shinohara et al., 1998; Hoshino et al., 2001a). One of the candidates responsible for

the anomalous heating is the acceleration in the slow-mode shocks (Schwartz et al., 1987;

Saito et al., 1995), which can explain a fast energy conversion from the stored magnetic

energy to the plasma kinetic energy (Petschek, 1964). However, Saito et al. (1995) have

demonstrated that the plasma sheet-lobe boundaries do not necessarily satisfy the slow

mode jump condition even if the electron flat-topped distributions are observed in the

downstream region. This indicates that the conventional slow-mode shocks might not

play a significant role in the electron heating in the Earth magnetotail. Shinohara et al.

(1998) also observed the flat-topped electrons associated with an electromagnetic turbu-

lence near the X-type neutral line. They concluded that the electromagnetic turbulence

results from the lower hybrid drift instability (LHDI) and suggested that the electron

heating should be closely related with the LHDI. Hoshino et al. (2001a), on the other

hand, discussed the physical processes producing the flat-topped electrons by compar-

ing the satellite observations and the electromagnetic particle-in-cell (PIC) simulations.

They suggested that the Buneman instability (Buneman, 1958) excited due to the veloc-

ity difference between the stationary ions and the beam electrons accelerated near the

X-type neutral line and/or the electron bump-on-tail instability (Omura et al., 1996)

arising between the weak beam electrons and the stationary hot electrons should be re-

sponsible for the electron scattering in the plasma sheet-lobe boundary region. However,

they do not specify the nature of the instabilities in detail possibly because the simulation

area with the periodic boundaries is too small to describe the nonlinear feature of such

instabilities. In fact, a small system with the periodic boundaries can affect nonlinear

wave-particle interactions in the boundary region via high energy particle passing across

the boundaries.

Wave activities in the plasma sheet-lobe boundary region of the Earth magneto-

tail have been extensively studied by means of the Geotail satellite observations (e.g.,

Matsumoto et al., 1994; Kojima et al., 1994). Their main finding is that most of the

broadband noise in the wave spectrum obtained in the boundary region are not contin-

uous noise but are composed of a series of solitary pulses called the electrostatic solitary

waves (ESW). The generation mechanism of the ESW observed in the magnetotail is

explained by the nonlinear mode of the electron two-stream instabilities (e.g., Omura et

al., 1996) including bump-on-tail instability or the Buneman instability as reported by

Drake et al. (2003). Therefore the electron beam flowing relatively to the background

electrons or ions is inevitable in order to generate the ESW. Magnetic reconnection can

be one of the strong candidates for the process producing such an electron beam (Kojima

et al., 1994). Actually, the satellite observations on the dayside magnetopause boundary
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reported by Matsumoto et al. (2003) suggest that magnetic reconnection should be re-

lated to the ESW activities. Recently, Cattell et al. (2005) have observed large-amplitude

solitary waves and associated electron holes in the plasma sheet-lobe boundary region of

the magnetotail when near-Earth reconnection has occured. Their conclusion is that the

detected ESW result from the Buneman instability, and not from the electron two-stream

instabilities. The observations by Matsumoto et al. (2003) and Cattell et al. (2005) in-

dicate that the electrostatic wave activities may play an important role in the electron

energization in the plasma sheet-lobe boundary region during magnetic reconnection.

In this paper, we study electron heating process in detail expected in the boundary be-

tween the magnetotail lobe and the plasma sheet associated with magnetic reconnection

by performing large-scale PIC simulations using the adaptive mesh refinement (AMR)

and particle splitting techniques (Fujimoto and Machida, 2005b). We show that intense

electrostatic waves are excited in the plasma sheet-lobe boundary region by the electron

two-stream instability between the cold electrons loaded in the lobe and the strong beam

electrons with high temperature. The electrostatic waves propagating along the ambient

magnetic field scatter and heat the electrons along the field line, and form the flat-topped

electron distribution function. We also demonstrate that the ESW are generated as a

result of the nonlinear evolution of the electron two-stream instability during magnetic

reconnection, even when a strong guide field as imposed in Drake et al. (2003) is absent.

4.2 Simulation Model

The present study employs a 2-1/2 dimensional electromagnetic PIC code with the

AMR technique and the particle splitting algorithm, which has been described by Fuji-

moto and Machida (Fujimoto and Machida, 2005a,b). The AMR technique subdivides

and removes computing cells dynamically in accordance with a refinement criterion and

quite effective to achieve high-resolution simulations of phenomena that locally include

micro-scale processes. In our code, the spatial resolution is increased by introducing finer

cells hierarchically onto the uniform base cells that cover the entire simulation area. If

a base cell is refined, four child cells that have half the size of the base cell are gener-

ated. These child cells can be also refined in turn and finer cells are produced, and so

on. One of the main problem in developing the electromagnetic PIC codes using the

AMR technique is the decrease in the number of particles per cell in the refined region

(Fujimoto and Machida, 2005a). In order to solve this problem, we subdivide particles

residing in the subdivided cells and control the number of particles per cell. We employ

the particle splitting algorithm developed by Lapenta (2002), in which the moments on
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each grid (the charge and current densities), the total charge, mass, momentum, and

energy of particles, and the distribution function of particles are retained between before

and after the particle splitting. Each cell is needed to have information of the parent,

child, and neighboring cells, and the particles residing in the cell. The communication

between cells or between a cell and the particles in the cell is supported by a set of

pointers, constructing the fully threaded tree structure (Khokhlov, 1998). A refinement

level L in the hierarchical cell structure is defined by using the cell size of the level (∆L)

as L ≡ log2(lz/∆L), where lz is the vertical size of the two-dimensional simulation area.

We use only cells with integer level. More detailed description on our code is shown in

Fujimoto and Machida (2005b).

The refinement condition in the current study is defined by three physical values. The

first is the local electron Debye length, λDe = vth,e/
√

2ωpe, which is required to avoid

a numerical heating of local plasma, where vth,e =
√

2Te/me is the electron thermal

velocity (Te and me are the temperature and mass of electrons, respectively), and ωpe

is the electron plasma frequency. We use the initial value of vth,e for calculation of λDe,

because electrons are expected to be heated in the region where the electron dynamics

is important, that is, we use the minimum value of λDe. The second is the out-of-

plane electron flow velocity (Vey), because the inertial term in the generalized Ohm’s law

becomes dominant in the region where the electron flow is strong, so that the dissipation

of the magnetic field becomes strong and higher resolution is required. The third is the

in-plane electron current density (jexz =
√
j2
ex + j2

ez), which is required because intense

currents can excite microinstabilities so that electron-scale waves are expected to arise.

In each time step, if λDe, Vey, and jexz calculated at the center of a cell satisfy the

condition, ∆L > 2.0λDe or Vey > 2.0VA or jexz > 0.5enpsVA, the cell is subdivided and

four child cells are produced, otherwise, the child cells are removed if any. Here, VA is

the Alfvén velocity defined by the initial lobe field (B0) and plasma sheet density (nps),

and e is the electron charge. The particle splitting is performed only for the background

particles whose distribution is described later. The particle coalescence algorithm is also

implemented for the background particles once in a few hundred time steps. However,

in both the particle splitting and coalescence algorithms, we never choose particles in

the most refined (finest) cells to avoid numerical errors in physically important regions.

In the present study, the hierarchical cell structure consists of four cell layers.

The initial magnetic field configuration is given as Bx(z) = −B0 tanh(z/λ), and the

corresponding density is n(z) = nps sech2(z/λ), where λ is the half width of the initial

plasma sheet and set as λ = 0.5λi0 (λi0 is the ion inertial length defined by nps). In
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addition to the equilibrium, a small perturbation is superposed in the form,

Bxp(x, z) = 2a0/λ sech2((x− lx/2)/L′) sech2(z/λ) tanh(z/λ)

Bzp(x, z) = −2a0/L
′ sech2((x− lx/2)/L′) sech2(z/λ) tanh((x− lx/2)/L′),

(4.1)

where, lx is the horizontal length of the simulation area, and a0 and L′ provide the

amplitude and horizontal size of the perturbation, respectively. In the present study,

a0 = 0.15B0λi0, L
′ = 3.8λi0, and lx × lz = 122.9λi0 × 30.7λi0 are chosen. Furthermore,

the background plasma is loaded as nb(z) = nb0 tanh2(z/λ) and nb0 = 0.044nps in order

to describe the lobe plasma in the magnetospheric tail. Although there appears a weak

pressure imbalance due to this background profile, it is quickly justified without any

significant modification of the current sheet structure. Once the simulation starts, the

initial plasma sheet density and current profiles are quickly modified to adjust the field

perturbation. As a result, a thinner current sheet is formed near the center of the

simulation area, so that the tearing instability selectively develops therein. The cell size

is ∆LB
= 0.12λi0 for the coarsest cells and ∆LD

= 0.015λi0 for the finest cells, and the

time step is ∆tωci = 8.0×10−4 for all particles and refined regions in order to satisfy the

Courant condition on the finest cells, where ωci is the ion cyclotron frequency defined

by the lobe field (B0). The initial plasma condition is mi/me = 100, Ti,ps/Te,ps = 8.0,

Ti,lobe/Te,lobe = 1.0, Te,lobe/Te,ps = 1.0, and c/VA = 16.7, where Ts,ps and Ts,lobe are

the temperatures of the species s at the central plasma sheet and the magnetic lobe,

respectively, and c is velocity of light. We assume the periodic boundary in the x

direction and the conducting wall in the z direction.

4.3 Results

4.3.1 Parallel Electron Heating in the Plasma Sheet-Lobe Boundary Re-
gion

In order to investigate the electron heating process in the plasma sheet-lobe boundary

region, we have performed large-scale kinetic simulations so that the non-realistic effects

arising from the periodicity of the system, such as the compression of the magnetic field

and plasma in the magnetic island and high energy particles passing across the periodic

boundary are negligible in the extensive region around the X-line. A snapshot of the

out-of-plane current density with magnetic field lines at tωci = 15.6 is shown in Figure

4.1a. It is clearly shown that a strong current sheet with narrow width is formed around

the X-line, supporting fast reconnection resulting from an intense magnetic dissipation

due to the electron inertia effects (e.g., Vasyliunas, 1975; Hesse et al., 1999). Figure
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Figure 4.1: (a) Out-of-plane current density (Jy) and (b) electric field parallel to the
local magnetic field (E‖) at tωci = 15.6. The magnetic field lines (white solid lines) are
superposed in each figure.

4.1b presents a contour map of the electric field parallel to the in-plane magnetic field

described by the white solid lines, that is, E‖ = E·b, where b = [(Bx, 0, Bz)/
√
B2

x +B2
z ]

T .

It is found that wave-like structures of E‖ are induced almost along the magnetic field

lines around the edge of the plasma sheet, that is, in the plasma sheet-lobe boundary

region. It is worth noticing that the wave-active region is inside the magnetic separatrices

where the fast outflow of electrons accelerated near the X-line is expected to present.

The magnification of the right-hand plane of Figure 4.1b is shown in Figure 4.2.

In order to reveal the role of the waves, we have investigated the time evolutions of

the ve‖ − x phase space distribution and E‖ profile along a magnetic field line passing

through the wave-active region at tωci = 15.6, where ve‖ = ve · b is the electron velocity

parallel to the in-plane magnetic field. Figure 4.3 shows the snapshots of such profiles

at (a) tωci = 13.6, (b) 15.6, and (c) 17.2. We choose the field line passing through

(x/λi0, z/λi0) = (84.0,−1.32) at each time, the trace of which is presented in Figure 4.2

by the white dashed line. The magnetic field line at tωci = 13.6 is not yet reconnected. At

this time, the electrons locating along the field line are slowly pulled into the diffusion

region due to E‖ induced near the X-line. Counter-streaming electrons coming from
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Figure 4.2: Magnification of Figure 4.1(b) for the right-hand side of the X-line.
White dashed lines represent the magnetic field lines passing through (x/λi0, z/λi0) =
(84.0,−1.32) at (a) tωci = 13.6, (b) 15.6, and (c) 17.2.

the left-half plane of Figure 4.1b appear only near the X-line, and the wave activity is

weak in most region. On the other hand, the magnetic field line has been reconnected at

tωci = 15.6 and passes through the downstream region of the fast electron flow generated

near the X-line. At this time, a strong electron beam flowing away from the plasma sheet

appears in the extensive region along the field line and the wave activity becomes strong.

It is shown that some of electrons are trapped by the electrostatic potential of the waves

and form the electron holes in the ve‖ − x phase space (see Figure 4.3b). At tωci = 17.2,

the magnetic field line reaches further downstream region and the electrons residing

along the line are found to be heated parallel to the ambient magnetic field, so that

the waves are damped due to the Landau resonance with the heated electrons. The

electron heating due to the waves is also evident in Figure 4.4, which shows the electron

distribution function at (x/λi0, z/λi0) = (71.8,−1.32) for each time presented in Figure

4.3. The electron distribution function at tωci = 13.6 consists of one component of a

cold isotropic electrons with a weak bulk velocity, Ve‖ ≈ −VA, along the magnetic field

line. At tωci = 15.6, in addition to this cold component, a strong beam component with

Ve‖ ≈ 7VA and high perpendicular temperature has arisen. Then electrons are finally

heated selectively parallel to the ambient magnetic field due to the scattering by the

waves and form the flat-topped distribution function.

In order to clarify the heating mechanism, it is important to estimate the heating

level resulting from the electron trapping by the electrostatic potential wells along the

field line. In this case, the trapping width vt can be a good benchmark for the heating

level, where vt means the absolute value of the velocity in the rest frame of the waves,

below which electrons are trapped by the electrostatic potential wells. The trapping
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Figure 4.3: Electron velocity (ve‖) and electric field (E‖) parallel to the in-plane magnetic
field are plotted along the field lines passing through (x/λi0, z/λi0) = (84.0,−1.32) at
(a) tωci = 13.6, (b) 15.6, and (c) 17.2, each of which is represented by the white dashed
line in Figure 4.2.
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Figure 4.4: Electron distribution functions at the position (x/λi0, z/λi0) = (71.8,−1.32)
and the time (a) tωci = 13.6, (b) 15.6, and (c) 17.2.

width vt is related to the amplitude of the wave potential φ0 by,

1

2
mev

2
t ∼ 2eφ0. (4.2)

The potential amplitude φ0 is represented as,

φ0 =
E0

k
, (4.3)

where we assume Ex(x) = E0 sin kx and Ex � E‖ in the rest frame of the waves. Thus

vt is estimated as,

vt ∼ 2

√
eE0

mek
(4.4)

In our simulations, the wave amplitude reaches E0 ≈ 0.40VAB0 and the typical wave

length is λw ≈ 1.3λi0 which corresponds to kλi0 ≈ 4.8 (see also Figure 4.7). Thus the

trapping width is calculated using (4.4) as vt ≈ 5.8VA, so that the shoulder width of the

flat-topped electron distribution is estimated as 2vt ≈ 12VA, which is fairly consistent

with our simulation results (see Figure 4.4c). The shoulder energy of the flat-topped

electrons can be also obtained from Esh ∼ mev
2
t /2. Taking typical parameters in the

Earth magnetotail, B0 ∼ 20 nT and nps ∼ 0.3 cm−3, the shoulder energy can be calcu-

lated to be Esh ∼ 1 keV, which is consistent with satellite observations (e.g., Shinohara

et al., 1998).

It is also valuable to estimate the bouncing time τb of trapped electrons in order to

know the time scale for the electron heating. We consider a single electron trapped by

the sinusoidal electrostatic potential. This electron obeys the equation of motion,

me
d2x

dt2
= −eE0 sin kx

� −eE0kx,
(4.5)
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where we assume a small amplitude of the electron displacement compared to the wave

length. Thus the bouncing frequency of the trapped electron is obtained as

ωb =

√
ekE0

me

, (4.6)

so that τb is estimated to be

τb ∼ ω−1
b =

√
me

ekE0

. (4.7)

Using the same parameters employed in the above discussion, we get τb ∼ 0.072ω−1
ci ,

which indicates that the time scale for the electron heating is quite shorter than the

Alfvén transit time τA ∼ 1.0ω−1
ci that is thought to govern the structure change of the

current sheet associated with magnetic reconnection. Therefore such electron heating

should occur in the extensive region in the plasma sheet-lobe boundary region where the

intense wave activity appears. This is confirmed by Figure 4.5, which shows the profiles

of the electron temperatures (Te‖, Te⊥, and Tey) at tωci = 17.2 along the magnetic field

line traced in Figure 4.2. The temperatures are defined by,

Tej =
me

n

∫
(vej − vej)

2f(ve) d
3v, (4.8)

where,

vej =
1

n

∫
vejf(ve) d

3v, (4.9)

n =

∫
f(ve) d

3v. (4.10)

Here, f(ve) is the local distribution function of electrons, j (=‖, ⊥, and y) denotes the

each component, ve‖ = ve · b with b = [(Bx, 0, Bz)/
√
B2

x +B2
z ]

T , ve⊥ = ve · (b× êy), and

vey = ve · êy (êy is the unit vector directing toward +y). It is found that the flat-topped

electrons, which have higher temperature in the parallel direction, widely appear along

the field line.

4.3.2 Instability Responsible for the Electron Heating

In the previous subsection, we have found that the electron heating parallel to

the ambient magnetic field occurs in the plasma sheet-lobe boundary region due to the

electron trapping by the electrostatic potential wells associated with the waves, so that

the flat-topped electron distribution is formed. In this subsection, we investigate how

the unstable waves are excited in the boundary region.
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Te‖, Te⊥, and Tey, respectively.

Figure 4.6 shows the time evolution of Ex profile along the x axis at z/λi0 = −1.32,

where the waves are quite active (see Figure 4.2). It is found that the waves are prop-

agating away from the diffusion region almost along the magnetic field line. The phase

velocity is Vph ∼ 4VA in the early stage and increases as they propagate downstream.

These waves hardly propagate across the magnetic field line (i.e., in the z direction in

the boundary region) and the perpendicular component is quite small, indicating that

they are highly electrostatic.

The wave spectrum of Ex in the ω-k space is shown in Figure 4.7(contours). The

sampling region is 68.0 ≤ x/λi0 ≤ 75.6 at z/λi0 = −1.32 and the time interval is

14.2 ≤ tωci ≤ 15.3, which is the region surrounded by the white dashed line in Figure 6

where the number of the trapped electrons are so small that the linear theory is expected

to be available. It is found that the spectrum has a clear peak around kλe0 � 0.48

and ω � 0.11ωpe0, where ωpe0 is the electron plasma frequency defined by nps, and

λe0 = c/ωpe0 is the electron inertial length. Figure 4.3 and Figure 4.4 indicate that the

strong electron beam along the magnetic field line seems to be responsible for the unstable

waves, providing the free energy. In this case, two kinds of instability are prospective.

One is the electron two-stream instability between the strong beam electrons and the

almost stationary electrons, and the other is the Buneman instability excited due to the

velocity difference between the strong beam electrons and the stationary ions.

The unstable waves excited by the electron two-stream instability have the following

dispersion relation at the linear stage,

1 − ω2
pe,s

(ω − kVs)2
− ω2

pe,f

(ω − kVf)2
= 0, (4.11)

where ω = ωr + iγ, subscripts s and f denote the slow (or stationary) and fast beam

electrons, respectively, and Vj (j = s, f) is the beam velocity of component j. In Figure
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4.7, the wave frequency ωr and growth rate γ satisfying the dispersion equation (4.11) are

superposed by the bold solid and dashed lines, respectively, for the case of Vs = −1.0VA,

Vf = 7.0 VA, ne,s = 0.031 nps, and ne,f = 0.013 nps, where ne,j (j = s, f) is the number

density of the electrons involved in component j. These theoretical profiles well agree

with the simulation results, that is, the wave spectrum obtained from our simulations

has an intense peak being consistent with a theoretical dispersion relation (bold solid

line), where the growth rate from the theory (bold dashed line) reaches a maximum

value. There remains a slight ambiguity in the values of the adopted parameters (i.e.,

Vs, Vf , ne,s, and ne,f ), but the theoretical profiles are essentially unchanged even if the

parameters are slightly shifted.

On the other hand, the linear dispersion relation of the Buneman instability is rep-

resented as,

1 − ω2
pi

ω2
− ω2

pe,f

(ω − kVf )2
= 0, (4.12)

where ωpi is the ion plasma frequency, and we assume that the ion beam velocity is

negligible compared with the electron beam velocity. The unstable waves excited by

the Buneman instability are expected to have ωr ∼ (ω2
piωpe,f)

1/3 = 0.037ωpe0, and k ∼
ωpe,f/Vf = 0.27 λ−1

e0 , using ni = 0.044 nps, ne,f = 0.013 nps, and Vf = 7.0 VA, where ni is

the number density of ions (Buneman, 1958). Therefore the dispersion relation of the

Buneman instability is inconsistent with the spectral peak obtained from our simulations.

Furthermore, the growth rate is estimated as γ ∼ ωr ∼ 0.037ωpe0, which is smaller than

that of the electron two-stream instability. Thus we can conclude that the instability

responsible for the electron heating should be the electron two-stream instability, and

not the Buneman instability. A weak peak that appears at the lower left of the intense

peak probably represents the Buneman instability.

4.3.3 Origin of the Electron Beam

In this subsection, we study how the strong electron beam with high perpendicular

temperature as shown in Figure 4.4b is produced. In order to investigate the origin of the

electron beam, we pick out the electrons forming the beam component with ve‖ > 4.0

at tωci = 15.6 and trace their trajectories backward in time. Figure 4.8 shows the

positions of such electrons at tωci = 15.6 (filled circles) and 14.0 (blue triangles and

red squares), and the magnetic field lines at tωci = 14.0 (solid lines). Note that we

classify the electrons chosen at tωci = 15.6 into two categories, that is, the electrons

with low perpendicular energies (
√
v2

e⊥ + v2
ey < vth,e0) and those with high perpendicular
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the electrons forming the beam component with ve‖/VA > 4.0 at tωci = 15.6 as shown
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√
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e⊥ + v2
ey < vth,e) and high perpendicular energy (

√
v2

e⊥ + v2
ey >

2vth,e) at tωci = 15.6, respectively. Magnetic field lines at tωci = 14.0 are superposed.

energies (
√
v2

e⊥ + v2
ey < 2vth,e0), where vth,e0 =

√
2Te,ps/me is the initial electron thermal

velocity and vth,e0 = 3.33 VA in the present case. The positions of the former electrons

at tωci = 14.0 are indicated by the blue triangles and those of the latter electrons are by

the red squares in Figure 4.8.

We find that the origin of the electrons with the low perpendicular energy is clearly

different from that with the high perpendicular energy. Most electrons having the high

perpendicular energy at tωci = 15.6 have passed through the region quite near the X-line.

Thus we think that those electrons are originating from the lobe region and accelerated

by the inductive electric field Ey in the electron diffusion region and experience the

meandering/Speiser motion (Speiser, 1965). Some of them reflect at the magnetic mirror

points depending on their pitch angles after they are ejected from the plasma sheet, and

start the bouncing motion around the central plasma sheet. Such electrons can gain

more kinetic energy by performing the ∇B drift and the curvature drift in the opposite

direction of Ey (Hoshino et al., 2001b) and/or by experiencing the betatron acceleration

resulting from the increase of the magnetic field strength in the pileup region of the field

lines (Birn et al., 2000). Both of these processes can contribute to the increase of the

perpendicular energy of electrons. On the other hand, most electrons forming the cold

beam component with the low perpendicular energy at tωci = 15.6 are located in the

opposite side of the plasma sheet at tωci = 14.0. They are accelerated by E‖ (see Figure

4.1b) toward the plasma sheet along the magnetic field line and quickly pass through the
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downstream region in the vicinity of the X-line where strong Ey is imposed. Thus these

electrons arrive at the opposite side of the plasma sheet without experiencing significant

acceleration in the perpendicular direction.

4.3.4 Electrostatic Solitary Waves Evolved from the Beam Instability

It is known that the nonlinear evolution of the electron two-stream instabilities can

result in the generation of the ESW (e.g., Matsumoto et al., 1994; Kojima et al., 1994;

Omura et al., 1996), which have been observed in the dayside magnetopause (Matsumoto

et al., 2003) and the near-Earth magnetotail (Cattell et al., 2005) in association with

magnetic reconnection. In this subsection, we check whether the electron two-stream

instability excited in the plasma sheet-lobe boundary region evolves into the ESW. Figure

4.9a shows the scatter plot in the (−ve‖)−x phase space along the x axis at z/λi0 = 1.44

and tωci = 17.2. It is found that the electron holes are clearly formed at x/λi0 � 74.6

and 77.2 associated with the bipolar structures of E‖ presented in Figure 4.9b. These

bipolar E‖ structures result from the electrostatic potential, because the depressions in

the electron density relative to the ion density appear in Figure 4.9c, in which the ion

and electron densities are plotted by the dashed and solid lines, respectively. Thus we

can understand that the electron holes in the phase space represent the electron trapping

in the electrostatic potential wells.

In Figure 4.10, we show the time evolution of Ex profile along the x axis at the same

position in z as Figure 4.9. The bipolar structures seen in Figure 4.9b are found to be a

part of the waves excited by the electron two-stream instability in the early stage before

tωci ≈ 15.6. After tωci ≈ 15.6, the bipolar structures are separated from the unstable

waves and start to propagate independently. We consider that the difference in the phase

velocity attributes to the difference in the density of the electron beam component. This

idea comes from the fact that the phase velocity of the waves excited by the electron

two-stream instability increases as the density of the beam component decreases so that

the plasma frequency in the rest frame of the electron beam is dropped. The density

drop in the beam component is caused by the decrease of the high energy particles, which

are trapped by the electrostatic potential wells and excluded from the beam component.

However, the density in the source region of the electron beam continues to increase as

the reconnected field line moves from the X-line toward the pileup region of the field

lines. Therefore the wave packets locating near the source region (i.e., near the plasma

sheet along the field line) are dragged away from the main part of the unstable waves as

the density of the beam component increases.

The important point in Figure 4.10 is that the bipolar structures are stable for much
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Figure 4.9: (a) Parallel electron velocity (ve‖), (b) parallel electric field (E‖), and (c) ion
and electron densities (dotted and solid lines, respectively) along the x axis at z/λi0 =
1.44 and tωci = 17.2.
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Figure 4.10: Time evolution of Ex profile along the x axis at z/λi0 = −1.44.

longer time compared with the electron bouncing time (∼ 0.1ω−1
ci ). Thus we identify

these bipolar structures with the ESW. The left packet of the ESW located at x/λi0 �
74.6 in Figure 4.9b, which seems to be more stable than the right one, is propagating

downstream with the velocity VESW � 3 VA and the wave length λESW � 1.5 λi0, which

are comparable with the wave properties excited from the electron two-stream instability.

The ESW have arisen in association with magnetic reconnection also in earlier sim-

ulations using a three-dimensional particle-in-cell code (Drake et al., 2003). However,

the generation mechanism of the ESW in their simulations is different from those in our

simulations, in that their ESW are evolved from the Buneman instability. The ESW in

our simulations are also different from the satellite observations reported by Cattell et al.

(2005) for the same reason. Nevertheless, the generation mechanism in our study can be

one of the strong candidates to explain the ESW associated with magnetic reconnection,

because a large number of observations in the plasma sheet-lobe boundary region have

detected the ESW resulting from the electron two-stream instabilities (e.g., Matsumoto

et al., 1994; Kojima et al., 1994), which, we showed, are responsible for the formation

of the flat-topped electrons as often observed during magnetic reconnection (e.g., Saito

et al., 1995; Shinohara et al., 1998). We think that the Buneman instability dominantly

evolves in the regions where electrons are entirely flowing relatively to ions so that the

number of the stationary electrons are negligibly small, such as in the electron diffusion

region. Though it is impossible to study such current-aligned instabilities in our two-
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dimensional simulations, it is important to investigate the role of the instabilities in a

large three-dimensional system without the guide field.

4.4 Summary and Disccusion

We have demonstrated the electron heating mechanism expected in the plasma sheet-

lobe boundary region specifically of the Earth magnetotail. We used the newly developed

2-1/2 dimensional PIC code with the AMR and particle splitting techniques, which

enables us to perform large-scale kinetic simulations including the extensive downstream

region of the X-line. Our main finding is that the electron two-stream instability between

the background cold electrons and the strong beam electrons with high perpendicular

temperature should be responsible for the formation of the flat-topped electrons, which

have been often observed in the plasma sheet-lobe boundary region in association with

magnetic reconnection. Both the bump-on-tail instability and the Buneman instability

do not play a significant role in the electron heating process in the boundary region.

The heating mechanism of electrons is simple. Electrons are trapped by the elec-

trostatic potential wells resulting from the electron two-stream instability and scattered

along the ambient magnetic field, so that the truncated (i.e., flat-topped) distribution

function is formed in the parallel direction. The amplitude of the electrostatic turbu-

lence is large enough to produce the flat-topped electrons having a high shoulder energy

up to a few keV. The heating process is quickly completed in comparison with the time

scale of the dynamic change of the current sheet, so that, once magnetic reconnection

is triggered, the flat-topped electrons should be observed in the extensive region of the

boundary region. The strong beam electrons consist of two components originating from

distinct regions. Some electrons come from the opposite boundary region of the plasma

sheet along the magnetic field line, forming the cold component of the electron beam.

The others are originating from the lobe region, passing through the electron diffusion

region. These electrons are strongly accelerated in the perpendicular direction near the

X-line, forming the hot component of the electron beam. We have also revealed that

the ESW, which have been often observed in the plasma sheet-lobe boundary region, are

evolved from the electron two-stream instability in association with magnetic reconnec-

tion. Thus we conclude that the electron two-stream instability presented in the current

study should be responsible not only for the formation of the flat-topped electron distri-

bution, but also for the generation of the ESW in the plasma sheet-lobe boundary region

when magnetic reconnection has occured.

Another important candidate responsible for the formation of the flat-topped elec-
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trons is the LHDI driven by the cross-field current flowing in the boundary region (Huba

et al., 1978; Shinohara et al., 1998). The unstable waves excited by the LHDI propagate

obliquely to the ambient magnetic field, so that electrons can be scattered along the

magnetic field by the waves. Though it is impossible to study the effects of the LHDI

by using our two-dimensional simulations because they omit wave modes propagating

in the direction of the sheet current (i.e., the y direction), it is possible alternatively to

speculate on the instability by resorting to the linear theory. As shown in Figure 4.7,

the growth rate of the electron two-stream instability is estimated as γETS ∼ 0.1ωpe,

where ωpe is the local plasma frequency of electrons. On the other hand, the growth

rate of the LHDI can be approximated by γLHD ∼ 0.1ωLH, where ωLH =
√
ωciωce (ωci

and ωce are the local cyclotron frequencies of ions and electrons, respectively, here) is

the local lower hybrid frequency (Davidson et al., 1977). If the relateion ωpe ≈ ωce is

assumed, γLHD ∼ √
me/mi γETS is derived. Therefore the growth rate of the LHDI is

much smaller than that of the electron two-stream instability, which indicates that the

LHDI could not affect the formation of the flat-topped electrons so much as the electron

two-stream instability.

Slow-mode shocks can be also a candidate for the electron scattering in the parallel

direction (Schwartz et al., 1987). However, we could not obtain a clear structure of the

slow-mode shocks in the present simulation within an allowed simulation time. We think

that more large-scale simulations lasting for longer time are necessary for the generation

of the slow-mode shocks (Arzner and Scholer, 2001). This indicates that it takes much

longer time for the slow-mode shocks to affect the electron heating compared with the

electron two-stream instability. Thus we suggest that the heating in the slow-mode

shocks would not be effective for the formation of the flat-topped electron distribution

in the vicinity of the X-line.

Finally, we make a comment on the net acceleration due to E‖ that the electrons

ejected from the plasma sheet may experience during passing through the wave active

region along the magnetic field line. Such acceleration could be one of the generation

mechanisms for high energy electrons in association with magnetic reconnection. In

Figure 4.11, we show the kinetic energy We‖ that a representative electron can gain from

E‖ while it moves from the center of the plasma sheet (z/λi0 = 0) along the magnetic

field line at tωci = 15.6. Here, We‖ is defined by,

We‖(x(l)) =

∫ s=l

s=0

(−e)E‖(s) ds, (4.13)

where s denotes the field-aligned coordinate starting at the center of the plasma sheet,

and l is the distance from the origin along the coordinate. The electron is strongly
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Figure 4.11: Kinetic energy that an electron can gain from the electric field while it
moves from the center of the plasma sheet (z/λi0 = 0) along the magnetic field line
passing through (x/λi0, z/λi0) = (84.0,−1.32) at tωci = 15.6 as shown in Figure 4.2.

decelerated by E‖ during the fast ejection from the plasma sheet. In the wave active

region, the electron repeats acceleration and deceleration in accordance with the wave

structure, but the net energy gain through the region is absent. Therefore the net

acceleration due to E‖ along the wave active region does not seem to occur in our

simulations. Nevertheless, this problem should be carefully considered. Recent study

by Hoshino (2005) has demonstrated that electrostatic waves having 10 times larger

amplitude than that in our simulations can be excited in association with a driven

reconnection. Such large waves may contribute to the net energy gain of the outflowing

electrons.



CHAPTER 5

Conclusions and Further Studies

So far, a large number of simulation studies using PIC codes have been devoted to

understanding a nonlinear evolution of the current sheet associated with magnetic re-

connection. However, it has been difficult to describe a large-scale dynamics of magnetic

reconnection by the kinetic simulations due to limited computer resources. The main

unresolved issues in the reconnection processes include the triggering mechanism, the re-

connection rate in the steady-state reconnection, and the energy transport mechanism.

The difficulty in approaching such issues lies in the fact that macro-scale structures can

be strongly affected by localized micro-scale processes, in which the kinetic treatment of

plasma is required.

In order to overcome the difficulty, we first developed a new electromagnetic kinetic

code that employs the AMR technique and the particle splitting algorithm to conven-

tional PIC codes. The AMR technique subdivides and removes cells dynamically in

accordance with a refinement criterion and enhances the spacial resolution locally. On

the other hand, the particle splitting algorithm divides particles locating in fine cells so

that it conserves the mass per charge, the total momentum, energy, and distribution

of function of particles, and the moments on grids. The particle splitting is needed in

order to control the number of particles per cell. Too small number of particles per

cell can lead to a significant numerical noise. We performed some test simulations and

compared three runs without the AMR, with the AMR, and with both the AMR and the

particle splitting. These results indicate not only that the AMR and particle splitting

algorithms are successfully applied to the conventional PIC codes, but also that they

are quite effective to achieve high-resolution simulations on the evolution of the current

sheet associated with magnetic reconnection. Thus the new code allows us to implement

a large-scale kinetic simulation on magnetic reconnection.

One of our goals by using large-scale simulations is to investigate a long time evolution

of the diffusion region and to see what supports fast reconnection in a steady state. Our
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results showed that fast reconnection was quickly achieved in a fully kinetic system but

the system did not reach steady state and the reconnection rate went down significantly,

even though the effects of the periodic system were almost excluded. We conclude that

the key process responsible for slowing magnetic reconnection is the extension of the

electron diffusion region associated with the evolution of the strong polarization electric

field imposed in the electron inflow region. The polarization electric field directing toward

the neutral sheet is caused by the inertia difference between ions and electrons, and

enhanced by the meandering motions of the background ions. Because the hot ions

initially loaded in the Harris-type current sheet have a large velocity in the out-of-plane

direction, they can easily escape from the diffusion region due to the Lorentz force

before their meandering motions become dominant. Thus their impact on the strong

electrostatic field is small. The polarization electric field forces the inflow electrons to

move toward the out-of-plane direction by the E×B drift and enhances the out-of-plane

current density in the electron inflow region. The role of the current is to reduce the

curvature of the magnetic field lines so that they are mostly parallel to the x direction

near the X-line, in such a way that the current density becomes uniform along the

upstream edge of the electron diffusion region. As a result, the electron meandering

region so the electron diffusion region extends along the x direction. In order to confirm

the role of the polarization electric field, we compare the simulation results withmi/me =

1 and 100. It is found that (1) a steady-state reconnection is achieved in the system where

the polarization electric field does not arise, (2) a large reconnection rate is obtained

even in the system without the Hall effects. It is suggested that other mechanisms

that are not included in the present model might play an important role in enhancing

the reconnection rate. One of the candidates is the anomalous resistivity arising from

nonlinear interactions between waves and particles. Indeed the Buneman-type instability

is expected to arise in the y direction, because there exists a large velocity difference

between ions and electrons beyond the electron thermal velocity in the electron diffusion

region. In order to investigate the role of the Buneman-type instability, it is necessary

to perform a large-scale kinetic simulation in the three-dimensional system.

Another goal is to reveal energy transport processes associated with magnetic recon-

nection, that is, where and how plasma is accelerated and heated. In the present study,

we paid attention to an electron heating mechanism in the plasma sheet-lobe boundary

region, where the truncated (i.e., flat-topped) distribution function of electrons was of-

ten observed in the Earth magnetotail during magnetic reconnection. We found that the

electron two-stream instability between the background cold electrons and the strong

beam electrons with high perpendicular temperature should be responsible for the for-
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mation of the flat-topped electrons. Electrons are trapped by the electrostatic potential

wells resulting from the electron two-stream instability and scattered along the ambi-

ent magnetic field, so that the truncated distribution function is formed in the parallel

direction. We showed that the electron heating through this process occured in the ex-

tensive region of the boundary region and the heating level was consistent with satellite

observations. The strong beam electrons consist of two components originating from

distinct regions. Some electrons come from the opposite boundary region of the plasma

sheet along the magnetic field line, forming the cold component of the electron beam.

The others are originating from the lobe region, passing through the electron diffusion

region. Furthermore, we revealed that the ESW could be evolved from the electron two-

stream instability in association with magnetic reconnection. Thus such waves should

be observed in the boundary region during reconnection.

The important issue which we could not access through this study is the triggering

mechanism of magnetic reconnection. In the present study, magnetic reconnection is

initialized with a small perturbation in the magnetic field, so that the resulting thinner

current sheet enhances the growth rate of the tearing instability (Furth et al., 1963; Drake

and Lee, 1977). However, since the current sheet width typically reaches a few Re in the

Earth magnetotail (e.g., Sergeev et al, 1993), it is difficult for the tearing mode alone to

trigger fast reconnection within a sufficiently short time scale. Recent two-dimensional

simulations in the plane orthogonal to the initial magnetic field (in which the tearing

instability does not arise) have revealed that the LHDI is excited at the edge of the

current sheet and it modifies the initial structure, so that a Kelvin-Helmholtz instability

(KHI) develops at much faster rate than predicted by linear theories based on the initial

equilibrium (Shinohara et al., 2001; Lapenta and Brackbill, 2002). Furthermore, recent

three-dimensional simulations have suggested that the modification of the initial profile

caused by the LHDI can allow the onset of magnetic reconnection and enhance the

growth of the tearing instability (Lapenta et al., 2003; Scholer et al., 2003; Ricci et al.,

2004). However, the system sizes employed in their simulations are not large enough for

the KHI (which has a MHD scale) to arise because of limited computer resources. Thus

it is an open question how the KHI affects the tearing instability. Three-dimensional

version of our code would enable us to perform 10 − 50 times larger-scale simulations

than the previous simulations. It is a promising tool to study the relationship between

the tearing instability, the LHDI, and the KHI, and a key to open a new era.
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