磁気リコネクションの大規模粒子シ ミュレーション

Large-Scale Particle-in-Cell Simulation of Magnetic Reconnection

Keizo Fujimoto

Computational Astrophysics Lab., RIKEN

Magnetic Reconnection Line: Field line, Contour: *n*_e Arrow: *V*_e

/nome/tkeizo/HMH_code/2d_main_cyc_4/output/x+vz9rng3dn44p/part/v3569.tid

- Change in field line topology
- Plasma acceleration and heating

Impact of Magnetic Reconnection

Main Issues of Magnetic Reconnection

Triggering mechanism

How can reconnection be triggered *quickly*?

Tearing mode is not sufficient.

 $\tau_{g} \sim 2\pi (\lambda/V_{A}) R_{m}^{3/5} = 5.6 months$ >> a few *min*

Quasi-steady process of fast reconnection

 $\frac{\partial B}{\partial t} = \eta \nabla^2 B/\mu_0 \quad \eta : \text{Electric} \qquad \longrightarrow \qquad \text{Very small in collisionless} \\ \text{Resistivity} \qquad \longrightarrow \qquad \text{Very small in collisionless} \\ \text{plasmas} \end{cases}$

Fluid (MHD) : Sweet-Parker $E_R = R_m^{-1/2} \propto \eta^{1/2}$? or Petschek $E_{R} = (\pi/4) (\ln R_{m})^{-1} \propto \ln \eta$? model

(E_R: Reconnection rate, R_m: Magnetic Reynolds number)

Plasma acceleration and heating mechanism

MagnetoHydroDynamic (MHD) Model (1950s-60s)

Fig. 4 (a) Sweet-Parker model and (b) Petschek model.

Sweet-Parker model [1957, 1958]

$$E_R \sim R_m^{-1/2}$$

 $(R_m = \mu_0 L V_A / \eta$: Magnetic Reynolds number)

Slow reconnection

Petschek model [1964]

$$E_R \sim (\pi/4) (\ln R_m)^{-1}$$

Fast reconnection

Exact solution of the MHD equations?

[Ono et al., JSPF, 2001]

MagnetoHydroDynamic (MHD) Simulations

[Ugai & Tsuda, 1977; Sato & Hayashi, 1979; Biskamp, 1986;...] (1970s – 80s)

[after Ugai & Tsuda, 1977]

What is the condition for Petschek reconnection to evolve?

 $E = \eta J$ Depending on the resistivity model.

Uniform $\eta \Rightarrow$ Sweet-Parker reconnection Localized $\eta \Rightarrow$ Petschek reconnection

Plasma Particle Simulations (1990s – early 2000s)

What is the condition for localized resistivity to arise?

What is the mechanism for generating the resistiviy in collisionless plasmas?

GEM (Geospace Environment Modeling) Magnetic Reconnection Challenge

Inclusion of the Hall effect is sufficient condition for the fast reconnection! [Birn et al., 2001]

$$E + V \times B = \eta j + \frac{1}{ne} j \times B - \frac{1}{ne} \nabla \cdot P_e$$

Hall Viscosity

Electron viscosity is dominant at the x-line. [*Cai & Lee, 1997; Hesse et al., 1999*]

After GEM Challenge

The Hall reconnection has not been accepted.

- Unclear theoretical background $\omega = k^2 \omega_{ce} \lambda_e^2$, $V_{out} \sim V_{Ae}$, $E_R \propto 1/L$
- Fast reconnection in electronpositron plasmas [Bessho & Bhatacharjee, 2005]
- No evidence for the steady-state fast reconnection

Dissipation mechanism is not consistent with observations.

• 3D effects must be important.

Multi-Scale & 3D Kinetic Simulations (later 2000s~)

9

2. Development of AMR-PIC code

AMR-PIC Simulation

e

Massively Parallelized AMR-PIC Code

[Fujimoto, JCP, 2011]

Fujitsu FX1 @Nagaya Univ.

3. Large-Scale 2D Simulation

Target of This Study

Does the inclusion of the Hall effect really lead to the fast reconnection?

Large-scale simulations to exclude the boundary condition effects.

Simulation Results [Fujimoto, 2006]

$$E_R \sim \frac{\delta}{L}$$

Elongation of the electron diffusion region

Reduces the reconnection rate.

Plasmoid Ejection [Daughton et al., 2006: Klimas et al., 2008]

/home/tkeizo/AMK_code/2d_main_cgc_r/output/x10z9rng3bu44p/part/03559.ftd

- The reconnection rate is enhanced associated with the plasmoid ejections.
- $E_R \sim 0.1$ on average.
- Mechanism of the plasmoid ejection and determining the reconnection rate is not clear.

Dissipation Mechanism in 2D Reconnection

Intense current Narrow current sheet

$$\delta_{e} \sim \lambda_{e} = c/\omega_{pe}$$
$$V_{d} = V_{e} - V_{i} > 2 v_{th,e}$$

Two-stream instabilities are expected.

Implication of Anomalous Effects: Lab. Experiment

[*Ji et al.*, GRL, 2008]

Implication of Anomalous Effects: Satellite Observation

Cluster 2001/10/01 (Day 274), 09:46:28.147 - 09:47:06.030

[Wygant et al, JGR, 2005]

4. Recent 3D Simulation Results

Instabilities in the Harris Current Sheet

Tearing instability

3D Reconnection Research

Drift

mode

LHDI and magnetic reconnection

Enhances the tearing mode growth rate [*Scholer et al.* (2003), *Ricci et al.* (2004)], No impact on the quasi-steady process [*Zeiler et al.*, (2002), *Fujimoto* (2009)].

Kink-type instability and magnetic reconnection

Drift kink (kδ~1, ω ~ ω_{ci}) [Pritchett & Coroniti, 1996]
Current sheet kink instability (k(λ_iλ_e)^{1/2} ~ 1) [Suzuki et al., 2002]
Electromagnetic LHDI (k(ρ_iρ_e)^{1/2} ~ 1) [Daughton, 2003]

Triggers magnetic reconnection [*Horiuchi & Sato* (1999), *Scholer et al.* (2003)],
No impact on the quasi-steady process [*Pritchett & Coroniti* (2001), *Karimabadi et al.* (2003)],
Gives anomalous dissipation during the quasi-steady reconnection [*Fujimoto* (2009, 2011)].

Mass Ratio Dependence of Kink Mode

 $k\delta = 1$ (δ : Half width of the current sheet)

[Daughton, POP, 1999]

Simulation Setup

<u>Time Evolution of the Current Sheet</u>

Surface: |J|, Line: Field line Color on the surface: Ey, Cut plane: Jy

Wave Number Spectrum

27

Wave-Particle Interactions

20

EM vs. ES Turbulence Effects

EM Turbulence Effect at the X-line

Plasmoid-Induced Turbulence I

Plasmoid-Induced Turbulence II

Wave Properties In collaboration with R. Sydora (U. Alberta)

 $\omega = \omega_r + \mathbf{i}\gamma$

Simulation results

$$V_{ph} \neq \frac{m_i V_i + m_e V_e}{m_i + m_e}$$

Wave Properties: Linear Analyses

<u>Summary</u>

The present study has investigated the steady-state process of the fast magnetic reconnection using the newly developed AMR-PIC code.

• 2D reconnection

The electron diffusion region is elongated in the outflow direction, which throttles the reconnection process. The plasmoid ejection plays a key role in enhancing the reconnection rate.

• 3D reconnection

A low-frequency EM mode arises in the current density direction, which causes the anomalous force around the x-line. The plasmoid ejection is again important in enhancing the turbulence.

Further investigation is needed to understand the nature of the EM mode