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[NASA]

Magnetic Reconnection

Auroral Substorms

Solar Flares

Fusion Device

ω >> ωcollision
Collisionless plasma
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MHD vs. Kinetic Reconnection
(Petschek Model [Petschek, 1964])

Compact 
diffusion region

Acceleration at 
Slow Shock

MHD Reconnection
 Fast reconnection
 Compact diffusion region
 Acceleration at slow shock
 Reproduced in MHD simulation              

[Ugai & Tsuda, 1977; …etc]
 Slow shocks were observed.

[Feldman et al., 1984; …etc]

Kinetic Reconnection  Fast reconnection
 Ion/electron Speiser accel.
 Hall electric current
 Reproduced in PIC simulation              

[Birn et al., 2001; …etc]
 Hall field was observed.

[Nagai et al., 2001; …etc]
6

??



SHH2015 @ NAOJ

Purpose of This Study

Understanding of the MHD-scale dynamics of collisionless
reconnection, by means of large-scale PIC simulation.

 Can the Petschek reconnection be achieved?

 How does the kinetic process connect to the MHD 
processes?
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AMR-PIC Model [Fujimoto, JCP, 2011]

Electron-scale 
structure
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Particle splitting Saving 90% memory

(Adaptive Mesh Refinement – Particle-in-Cell)
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AMR-PIC Simulations
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Performance of AMR-PIC Simulation

Strong scaling
Effective parallelism 
99.9990%

Massively parallelized for a reconnection problem.

Removing 
Poisson Eq.

Load balancing
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Simulation Setup
With an open boundary condition [Fujimoto, GRL, 2014]

660 c/ωpi

mi/me = 100
Lx×Lz = 660λi×330λi

T = 140 ωci
-1

Maximum resolution：
32,768 × 16,384

# of particles: ~ 2×1010

Memory needed： ~ 2 TB

Bx = B0 tanh[z/L]
L = λi

~600 c/ωpi
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Time Evolution of Current Sheet
Out-of-plane J 

Ion outflow speed 

660 λi
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Out-of-Plane J

250 λi

Sweet-Parker??

Long current sheet

Reconnection rate

ER ≈ 0.1

Dissipation region is localized.

30 λi

Petschek??
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Inflow

Outflow
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Slow Mode Shocks?
Petschek??

R-H 
condition

Slow shock?

Z
Slow shock acceleration?
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Ion Acceleration

Trajectory A:
1. ExB drift without 

acceleration
2. Speiser

acceleration in the 
current sheet

Trajectory B:
1. Speiser

acceleration in the 
current sheet

2. Drifting along field 
line without 
acceleration

ExB Speiser Speiser

BA
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Ion Acceleration

Speiser [1965]

 No ion acceleration at slow 
shock-like structure.

 Speiser-type acceleration in 
the current sheet.

⇒ Acceleration mechanism 
different from the Petschek’s.

Cold inflow

Hot outflow

κ2 = Rcurvature/ρgyro <1
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Consistent with hybrid simulations (Lottermoser
et al, 1998) and PIC simulations (Hoshino et al, 
1998) around the x-line.
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Ideal MHD Condition
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Ideal MHD condition breaks down over broad area in 
the outflow exhaust.  

 Hall term is dominant in the generalized Ohm’s law.



Hall Current
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𝑑𝑑�⃗�𝑣
𝑑𝑑𝑡𝑡
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𝜔𝜔𝑐𝑐
𝐵𝐵
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Equations of motion

Electric force Lorentz force
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ExB drift velocity Time evolution of 
Ez along particle 
trajectory ≈ 𝑣𝑣𝑧𝑧 𝜕𝜕𝐸𝐸𝑧𝑧

𝜕𝜕𝑧𝑧
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1
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Modified ExB drift velocity

𝐸𝐸𝑦𝑦

𝐸𝐸𝑧𝑧

𝐵𝐵𝑥𝑥
Uniform Ez

Non-uniform Ez

Y

Z

Y

Z

Ion
Electron

Ion
Electron

𝐸𝐸𝑦𝑦

𝐸𝐸𝑧𝑧

𝐵𝐵𝑥𝑥

No current

Hall current
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Summary
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Collisionless Reconnection

MHD Reconnection (Petschek model)

Collisionless reconnection differs from MHD reconnection 
even in the region far downstream of the x-line.

 Plasma acceleration at slow 
shock

 Localized current layer around 
the x-line

 No slow shock. Speiser–type 
acceleration of ions in the extended 
current layer

 Hall electric current in broad area in 
the outflow exhaust.Hall current

Ref. Fujimoto & Takamoto, Physics of Plasmas 23, 012903 (2016)
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