Anomalous Transport Induced by Plasmoid Formations in Collisionless Magnetic Reconnection

Keizo Fujimoto

National Astronomical Observatory of Japan

In collaboration with Richard Sydora (Univ Alberta)

Introduction

3D PIC simulation Wave activities around the X-line Impact of plasmoid formations

- Linear wave analysis
- Summary

Multi-Scale Nature of Reconnection

IPELS2013@накира

[NASA]

Observations of Wave Activities

Dynamical Current Sheet

[Fujimoto, PoP, 2006; Daughton et al., PoP, 2006]

2D PIC simulation

Thin current layer:
Elongation

Image: Plasmoid formation

IPELS2013@Hakuba

• Generation mechanism of the waves at the X-line.

Impact of the plasmoids in 3D system.

Simulation Setup

AMR-PIC-3D code [Fujimoto, JCP, 2011] on Fujitsu FX1 (1024 cores)

 $m_i/m_e = 100$ Max resolution: $4096 \times 512 \times 4096 \sim 10^{10}$ Max number of particles lon + Electron ~ 10^{11}

Max memory used ~ 6TB

Time Evolution of the Current Sheet

Surface: |J|, Line: Field line Color on the surface: Ey, Cut plane: Jy

Dissipation Mechanism [Fujimoto & Sydora, PRL, 2012]

Anomalous Transport at the X-line

Plasmoid-Induced Turbulence

IPELS2013@Hakuba

Plasmoid-Induced Turbulence

IPELS2013@Hakuba

Wave Properties

 $\omega = \omega_r + i\gamma$

[Fujimoto & Sydora, PRL, 2012]

Wave Properties: Linear Analyses

Summary

Large-scale 3D PIC simulation has been performed to investigate the dissipation mechanism of collisionless magnetic reconnection under anti-parallel and symmetric configuration.

Plasmoid formations are important to enhance the EM turbulence relevant to the magnetic dissipation.

The linear analyses revealed the properties of the EM mode:

- $\omega_{ci} < \omega_r < \omega_{LH,}$
- Shear-driven instability,
- Large growth rate even for $m_i/m_e = 1836$.