AMR-PIC Model and Application to Magnetic Reconnection

Keizo Fujimoto

Computational Astrophysics Laboratory, RIKEN

Magnetic Reconnection in Space

[Solar Flares]

(http://vestige.lmsal.com/TRACE/)

[Magnetospheric Substorms]

(<u>http://www2.nict</u> <u>.go.jp/dk/c232/</u>)

(Kivelson and Russel, 1995)

Multi-Scale Nature of Reconnection

L~10⁵ km
ISSS10@Banff, Canada

Multi-Scale Nature of Reconnection

MHD simulations

$$\frac{\partial B}{\partial t} = {}_{1}\nabla^{2}B$$

- The reconnection rate depends on the resistivity model. (Biskamp, 1986; Ugai, 1995)
- Global responses in substorms and flares are sensitive to the parameterization of the resistivity. (Raeder et al.,2001; Kuznetsova et al., 2007)

AMR-PIC Model

[Fujimoto & Machida, JCP, 2006; Fujimoto & Sydora, CPC, 2008]

(Adaptive Mesh Refinement – Particle-in-Cell)

Restriction in explicit method

$$\Delta x < \lambda_{De}$$
, $\omega_{pe} \Delta t < 1$

$$\Delta x/\Delta t > c$$

$$\lambda_{\text{De,ps}} \sim 3 \times 10^2 \text{ m}$$

$$\lambda_{\text{De,lobe}} \sim 6 \times 10^3 \text{ m}$$

AMR-PIC Model

[Fujimoto & Machida, JCP, 2006; Fujimoto & Sydora, CPC, 2008]

Finite-Difference Equations

Yee-Buneman scheme (Staggering grid scheme)

$$\frac{\vec{B}^{n+1/2} - \vec{B}^{n-1/2}}{\Delta t} = -\nabla \times \vec{E}^{n} \quad \text{[Villasenor & Buneman, 1992]}$$

$$\frac{\vec{E}^{n+1} - \vec{E}^{n}}{\Delta t} = c^{2}\nabla \times \vec{B}^{n+1/2} - \frac{1}{\varepsilon_{0}}\vec{j}^{n+1/2}$$

Charge Conservation

$$\frac{1}{\varepsilon_0} \vec{j}^{n+1/2}$$

➤ Local operations →

Facilitates parallel computation

Buneman-Boris method

$$\frac{\vec{v}_{sj}^{n+1/2} - \vec{v}_{sj}^{n-1/2}}{\Delta t} = \frac{q_{sj}}{m_{sj}} \left[\vec{E}^n(\vec{x}_{sj}) + \frac{\vec{v}_{sj}^{n-1/2} + \vec{v}_{sj}^{n+1/2}}{2} \times \vec{B}^n(\vec{x}_{sj}) \right]$$

$$\frac{\vec{x}^{n+1} - \vec{x}^n}{\Delta t} = \vec{x}_{sj}^{n+1/2}$$

Inter-Level Communications

Fine-to-coarse operations

- Deliver the data from fine cells to coarser cells,
- Give appropriate smoothing which removes the aliasing.

Coarse-to-fine operations

- Deliver the data from coarse cells to finer cells,
- Give the boundary conditions for the refinement regions.

Electromagnetic Wave in Vacuum

Staggering grid scheme

No numerical damping for any wave numbers

Von Neumann stability analysis

 $(E_l^n, B_l^n) \propto g^n e^{ik(l\Delta x)}$ g: Amplification factor

$$g = 1 - \frac{(\kappa c \Delta t)^2}{2} \pm i(\kappa c \Delta t) \sqrt{1 - \left(\frac{\kappa c \Delta t}{2}\right)^2}$$

|g| = 1 ($\Delta x/\Delta t > c$; Courant condition)

Electromagnetic Radiation Test

It is very difficult to apply the AMR to the staggering grid scheme!

Smoothing Function: f_{SM}

For
$$A = E$$
 and B ,
$$A_{SM,j} = f_{SM}(A_j) = \frac{\alpha A_{j-1} + A_j + \alpha A_{j+1}}{1 + 2\alpha}$$
$$(0 \le \alpha \le 0.5)$$
$$g = \frac{1 + 2\alpha \cos k\Delta x}{1 + 2\alpha} \le 1$$

- > Selectively damps the short wavelength modes.
 - Very simple (Very fast)
 - Easy parallelization
 - No wave dispersion changes
 - Flexible about damping rate

Electromagnetic Radiation Test 2

> The case without the smoothing

 \triangleright The case with the smoothing ($\alpha = 0.002$)

Load Balancing

Example using 8 nodes

Fixed block case

* Block = Decomposition domain

Adaptive block case

Adaptive Block Technique

Base-level cells in the entire domain are sorted in an appropriate order:

- > That is similar to Morton order,
- So that the block surface is as small as possible,
- Especially in the central current sheet, the surface must be small.

Performance of the AMR-PIC Model

Fujitsu FX1

@Nagaya Univ.

ISSS10@Banff, Canada

Large-Scale 3D Simulation

$$m_i / m_e = 100$$

Max. resolution: $4096 \times 512 \times 4096 \sim 10^{10}$

Max. number of particles
Ion + Electron ~ 10¹¹

Max. memory ~ 5TB

Large-Scale 3D Simulation

Side surface: J_v Surface contour: |J| Solid curves: Field lines

Wave Spectra (Y Direction)

LHDI

$$k_y \rho_e \sim 1$$

 $\gamma \sim \omega_{lh}$

Scale of Electron Meandering Orbit

$$\omega_m pprox rac{2}{3} rac{V_{ey}}{c} \omega_{pe} \; \; [Speiser, 1965]$$
 $\lambda_m pprox V_{ey} rac{2\pi}{\omega_m} = 3\pi \lambda_e$

[Fujimoto, 2009]

Wavelength of EM mode ~ Electron meandering scale

Possibility of electron scattering and resultant anomalous resistivity

Comparisons With Observation

Frequency

$$\lambda \approx 3\pi \lambda_e$$
 ~ a few 100km

$$V_{ph} = \frac{m_i V_{iy} + m_e V_{ey}}{m_i + m_e} \approx V_A$$

$$\omega = kV_{ph} \approx \frac{2}{3}\sqrt{\omega_{ci}\omega_{ce}} \sim \omega_{lh}$$

Observation of Cluster

[Zhou et al., JGR, 2009]

- \checkmark ω_{lh} -range EM waves near the central current sheet.
- ✓ Wavelength $\lambda \sim 352$ km

Summary

A new electromagnetic particle-in-cell (PIC) model with adaptive mesh refinement (AMR) has been developed for high-performance parallelization and applied to 3D magnetic reconnection.

- Staggering grid scheme + Charge conservation method + Smoothing
- Adaptive block technique
- More than 80% of parallel efficiency with 128 cores has been achieved for reconnection test simulations.
- Electromagnetic waves arise along the X-line and are enhanced associated with the splitting of the electron diffusion region.
- The wavelength is in the scale of the electron meandering orbit.
 - ⇒ Electron scattering and resultant anomalous resistivity.

Adaptive Block Technique

Buffer region and private octs

Global oct

Shared by all the nodes

grank: Rank

gOctNb: Neighboring oct

Private oct

Allocated in each node

rank: Rank

iNb: Parent cell of neighboring oct

ipr: Parent cell

OctCh: Child oct

Physics data

ISSS10@Banff, Canad