PIC Simulation of Magnetic Reconnection with Adaptive Mesh Refinement

Keizo Fujimoto

National Astronomical Observatory of Japan

Introduction

 Particle-in-Cell (PIC) model with adaptive mesh refinement (AMR)

 Wave activities in the reconnection region Electrostatic solitary waves (ESWs) Whistler waves EM waves around the x-line

Magnetic Reconnection in Space

Solar Flares

Multi-Scale Nature of Reconnection

ISSS11@Taiwan

[NASA]

Electron Diffusion Region

Restrictions of Explicit PIC Model

$$\begin{array}{|c|c|}\hline \textbf{Cell size} \\ \Delta x \leq \mathbf{3} \lambda_{De} & \lambda_{De} = \sqrt{\frac{\varepsilon_0 T_e}{n_e e^2}} \end{array}$$

Num of particles per cell

 $N_p \gtrsim 10^2$

Memory requirement per cell

Field (n_s, J_s, E, B)
$$14 \times 4$$
 Byte

Particle (
$$x_s$$
, v_s)
(12 × 4 Byte) × 10²

<<

AMR-PIC Simulations

ISSS11@Taiwan

de/3d_main_cyc_3/output/x1y5z8mg3bn44p/part/yzx0.00_087_1111.inp

Data Structure

Similar to a fully threaded tree (FTT) structure (Khokhlov, 1998).

[Fujimoto & Machida, JCP, 2006]

Basic Equations

$$\rho_{l,m,n} = \sum_{s} \sum_{j} q_{sj} S(\vec{x}_{sj} - \vec{X}_{l,m,n})$$

$$A(\vec{x}_{sj}) = \sum_{l} \sum_{m} \sum_{n} A_{l,m,n} S(\vec{x}_{sj} - \vec{X}_{l,m,n})$$
S: Shape function

Superparticles (Buneman-Boris method)

O Local operations Facilitate parallel computing
 × No numerical damping for any wave numbers!

Radiation of EM Waves

$$A_{SM,j} = f_{SM}(A_j) = \frac{\alpha A_{j-1} + A_j + \alpha A_{j+1}}{1 + 2\alpha}$$
$$(\alpha = 0.002)$$

 $E_{SM} = f_{SM}(E)$ $B_{SM} = f_{SM}(B)$

Example using 8 nodes

Fixed block case

* Block = Decomposition domain

t = 23.2 t = 23.2t =

 $t = \theta$.

ISSS11@Taiwan

0

2

1

3 4 5 6 PE

Adaptive Block Technique [Fujimoto, JCP, 2011]

Base-level cells in the entire domain are sorted in an appropriate order:

- > That is similar to Morton order,
- So that the block surface is as small as possible,
- Especially in the central current sheet, the surface must be small.

Performance of the AMR-PIC Model

[Fujimoto, JCP, 2011]

Fujitsu FX1 @Nagaya Univ.

Examples of the AMR-PIC simulation: Wave activities in the reconnection region

Electrostatic Solitary Wave (ESW)

[Matsumoto et al., GRL, 1994]

ESWs are often observed in the PSBL in the Earth magnetotail (Matsumoto et al., 1994).

Magnetic reconnection is closely related to the generation of the ESWs (Deng et al, 2004; Cattell et al., 2005; Viberg et al., 2013).

Electrostatic Solitary Wave (ESW)

[Fujimoto & Machida, JGR, 2006]

Electrostatic Solitary Wave (ESW)

[Fujimoto & Machida, JGR, 2006]

Whistler Waves

Cluster observations [Wei et al., JGR, 2007]

• High frequency waves with $0.1\omega_{ce} \sim \omega_{ce}$.

Right-hand polarizartion

Whistler Waves

[Fujimoto & Sydora, GRL, 2008]

Transverse E_{II}

Whistler Waves [Fujimoto & Sydora, GRL, 2008]

Wave Activities in Separatrix Region

ISSS11@Taiwan

EM Waves near the X-line

EM Waves in 3D magnetic reconnection

[Fujimoto & Sydora, PRL, 2012] Surface: |J|, Line: Field line # of particles ~ 10¹¹ Color on the surface: Ey, Cut plane: Jy

Dissipation Mechanism [Fujimoto & Sydora, PRL, 2012]

EM Waves in 3D Magnetic Reconnection

 $\omega = \omega_r + i\gamma$

Simulation results

[Fujimoto & Sydora, PRL, 2012]

Summary

Adaptive mesh refinement (AMR) has been implemented in the electromagnetic particle-in-cell (PIC) model to achieve large-scale simulations of magnetic reconnection.

Main differences from the usual PIC models are

- Tree-type data structure,
- Smoothing of the EM fields to avoid the wave reflection,
- Particle splitting-coalescence to control the number of particles per cell,
- Adaptive block technique to keep load balancing.

Summary2

We found wave activities in the reconnection region of

- Electrostatic solitary waves (ESWs) generated due to the electron 2-stream instability in the PSBL,
- Whistler waves excited by the temperature anisotropy in the downstream region, and
- EM waves maintained by the velocity shear around the x-line in 3D magnetic reconnection.