高速磁気リコネクションにおける プラズモイド誘導乱流

藤本桂三

国立天文台理論研究部

In collaboration with Richard Sydora (Univ Alberta)

Multi-Scale Nature of Reconnection

Impact of Dissipation Mechanism

Ugai, PoP, 1995 MHD simulations

Uniform η

$$\frac{\partial B}{\partial t} = \eta \nabla^2 B / \mu_0$$

Localized η

Kuznetsova et al., J. Geophys. Res., 2007

Nongyrotropic

=

 m_i

e

 $\overline{2P}\partial V_x$

ρ

 ∂x

Numerical resistivity only

- Slow reconnection
- **Quasi-steady** configuration
- Fast reconnection
- Quasi-periodic process

 $\overline{\partial P_{ixy}} +$

 ∂x

1

ne

 $_E$ ng _

 $\overline{\partial P_{ixz}}$

 ∂z

Dissipation in 2D Kinetic Reconnection

ELECTRONIS A Z B Speiser [1965]

$$-\frac{1}{n_e e} \nabla \cdot P_e \approx E_y \left[1 - \frac{5}{2} \left(\frac{z}{\delta_e} \right)^2 \right] = E_y$$
Fluid
Particle
[Fujimoto & Sydora, PoP, 2009]
$$\frac{\text{Inertia resistivity}}{\eta_{\text{in}} = \frac{m_e}{n_e e^2} \frac{1}{\tau_{tr}}}$$
the diffusion region

Inertia Resistivity & Current Sheet Width

X

Inflow region

 $E_{y,inflow} = -V_{inflow}B_{inflow}$

$$E_{y,xline} = E_{y,inflow}$$

Very thin current layer!

Implication of Anomalous Effects: Lab. Experiment

[Ji et al., GRL, 2008]

Implication of Anomalous Effects: Wave Activities

[Zhou et al, JGR, 2009]

Implication of Anomalous Effects

Dynamical Current Sheet

[Fujimoto, PoP, 2006; Daughton et al., PoP, 2006]

2D PIC simulation

Thin current layer: Elongation

Instabilities in the Harris Current Sheet

Tearing instability

Simulation Setup

AMR-PIC-3D code [Fujimoto, JCP, 2011] on Fujitsu FX1 (1024 cores)

 $m_i/m_e = 100$ Max resolution: $4096 \times 512 \times 4096 \sim 10^{10}$ Max number of particles lon + Electron ~ 10^{11}

Max memory used ~ 6TB

Time Evolution of the Current Sheet

Surface: |J|, Line: Field line Color on the surface: Ey, Cut plane: Jy

リコネクション研究会2013@愛媛大

Wave-Particle Interactions

$$A = \langle A \rangle + \delta A \qquad \left(\langle \cdot \rangle = \frac{1}{L_y} \int_0^{L_y} \cdot dy \right)$$

$$\langle -E_y \rangle = \frac{1}{\langle n_e \rangle} \left(\langle n_e \vec{V}_e \rangle \times \langle \vec{B} \rangle \right)_y$$

$$+ \frac{1}{e \langle n_e \rangle} \left\langle \nabla \cdot \vec{P}_e \right\rangle_y$$

$$+ \frac{m_e}{e \langle n_e \rangle} \left\langle \frac{\partial V_{ey}}{\partial t} + \vec{V}_e \cdot \nabla V_{ey} \right\rangle$$

$$+ \frac{1}{\langle n_e \rangle} \left\langle \delta n_e \delta E_y \right\rangle$$

$$+ \frac{1}{\langle n_e \rangle} \left\langle \delta (n_e \vec{V}_e) \times \delta \vec{B} \right\rangle_y$$

Anomalous effects
$$\begin{cases} \delta (n_e \vec{V}_e) \times \delta \vec{B} \rangle$$

$$\sum B_x = 0 \qquad B_x \otimes \int \int \int \int B_x \otimes B_x \otimes B_x \otimes \int B_x \otimes B_$$

Anomalous Transport at the X-line

Plasmoid-Induced Turbulence

Plasmoid-Induced Turbulence

Wave Properties

 $\omega = \omega_r + \mathbf{i}\gamma$

Simulation results

Wave Properties: Linear Analyses

<u>運動量の異常輸送</u> [Fujimoto & Sydora, in prep.]

電磁波動による電子運動量の異常輸送 $E_R^{an} = \frac{1}{\langle n_e \rangle} \left\langle \delta(n_e \vec{V}_e) \times \delta \vec{B} \right\rangle_y \quad \left(\langle \cdot \rangle = \frac{1}{L_y} \int_0^{L_y} \cdot dy \right)$

Summary

大規模な3次元粒子シミュレーションを実施して、高速磁気リコネクション時における磁気拡散機構を調べた。

プラズモイドによって誘発される電磁的乱流 が磁気拡散過程において重要な役割を果た すことがわかった。

線形波動解析を実施することによって、乱流 を引き起こす電磁波動の特性を調べた。

- $\omega_{ci} < \overline{\omega_r} < \omega_{LH}$
- シアー駆動型不安定性
- m_i/m_e=1836 でも大きな成長率

[Fujimoto & Sydora, PRL, 2012]

