Dissipation Mechanism in 3D Magnetic Reconnection

Keizo Fujimoto

Computational Astrophysics Laboratory, RIKEN

Outline

Introduction

- -- Importance of reconnection, Multi-scale nature
- Dissipation Mechanism in Magnetic Reconnection in 2D system & in 3D system
 -- Results from particle-in-cell simulations
- Observational Facts
 - -- In the Earth magnetotail and laboratory experiment
- Summary & Conclusions

Introduction

-- Why is reconnection important?

-- Why do we need to study the dissipation mechanism?

Reconnection (in the Earth Magnetoshere)

- Can induce global-scale convection causing change in the field line topology,
- ➢ Is inherently multi-scale process.

Reconnection (in Solar Flares)

Leads to rapid energy release,

Strongly accelerates the electrons and protons.

Open Questions on Magnetic Reconnection

- How is the fast reconnection triggered?
- What is the sufficient condition for the fast and steady reconnection?
 - > Which of macro-scale $(L >> \lambda_i)$ or micro-scale $(L < \lambda_i)$ physics controls the reconnection rate?
 - What is the dissipation mechanism at the X-line? (Inertia or anomalous resistivity?)
 - ➢ Is reconnection inherently steady or intermittent?
 - Is it possible to incorporate correctly the kinetic effects into fluid simulation models?

How are the electrons and protons accelerated by reconnection?

Why is the dissipation mechanism important?

Our goal is to understand macroscopic dynamics in a variety of systems.

Diffusion equation:

 η : Electric resistivity

 $\frac{\partial \vec{B}}{\partial t} = \bigcap_{\mu_0} \nabla^2 \vec{B}$ Macroscopic parameter resulting from microscopic (kinetic) processes.

In the MHD framework...

The reconnection rate depends on the resistivity model.

(Biskamp, 1986; Ugai, 1995)

Global responses in substorm and flares are sensitive to the parameterization of the resistivity.

(Raeder et al.,2001; Kuznetsova et al., 2007)

We need to know what is happening in the microscopic region in order to model the macroscopic dynamics.

Dissipation Mechanism in Magnetic Reconnection in 2D system & in 3D system

-- Results from particle-in-cell simulations

How is the resistivity generated?

The motion of charged particles supporting the current must be disturbed by "collision".

Collision with other particles

$$\eta = \frac{m_e \nu_c}{n_e e^2}, \quad \nu_c = \frac{1}{\tau_c}$$

How does the "collision "occur in collisionless plasmas? = How does the momentum transport occur?

Inertia resistivity

$$\eta = \frac{m_e \nu_T}{n_e e^2}, \quad \nu_T = \frac{1}{\tau_T} \sim \frac{V}{L}$$

Anomalous resistivity (Wave-particle interaction)

$$\eta = \frac{m_e \nu_w}{n_e e^2}, \quad \nu_w \approx \frac{R_e^{an}}{n_e m_e V_e}$$
$$R_e^{an} = -e \left(\left\langle \delta n_e \delta \vec{E} \right\rangle + \left\langle \delta (n_e \vec{V}_e) \times \delta \vec{B} \right\rangle \right)$$

Simulation Model

PIC + Adaptive Mesh Refinement (AMR)

[Fujimoto & Machida, 2006; Fujimoto & Sydora, 2008]

Refinement cells are selectively allocated around the X-line and separatrices.

2D Reconnection

Electrons are...

• Coherently accelerated in the diffusion region,

Inertia resistivity

• Not thermalized.

Electron Inertia Resistivity

[Speiser, 1970; Tanaka, 1995; Fujimoto & Sydora, 2009]

$$\eta_{in} = \frac{m_e \nu}{n_e e^2}, \quad \nu = \frac{1}{\tau_{tr}}$$
$$E_R = \eta_{in} j \approx \frac{m_e V_{ey}}{e \tau_{tr}}$$

The electrons must be accelerated quickly up to a high velocity.

$$\delta_e \approx \lambda_e \, (= c/\omega_{pe})$$

Magnetotail: ~ $10km \iff 10^{5}km$) Solar Flare: ~ $10^{-5}km \iff 10^{4}km$)

Is such a thin current sheet really stable in 3D system?

Unstable Modes Expected in the Current Sheet

Tearing instability

Time Evolution of the Current Sheet in the YZ Plane

$m_i/m_e = 25, \ L_x \times L_y \times L_z = 31 \times 7.7 \times 31$

Lower hybrid drift instability (LHDI) Kink-type instability Induction field due to tearing instability

Ne

Kink instability coexists with the tearing mode.

Reconnection Rate & Current Sheet Width

Dissipation Mechanism in 3D Reconnection

(2D reconnection case)

The electrons are intensely thermalized as well as accelerated in bulk.

Meandering Scale & Wavelength

Electron meandering scale

$$\omega \approx \frac{2}{3} \frac{V_{ey'}}{c} \omega_{pe} \quad [Speiser, 1965]$$
$$y_m \approx 3\pi \lambda_e \left(1 + \frac{3\pi}{2} \frac{\lambda_e}{V_{ey'}\tau}\right)$$
$$\approx 9\lambda_i$$

Meandering scale ~ Wavelength of the kink mode

Does the wave-particle interaction still occur in higher mass ratio cases?

In the Cases with Lager m_i/m_e (> 100)

> 2D simulations in the YZ plane

$$\underline{y_m \approx 3\pi\lambda_e} \left(1 + \frac{3\pi}{2} \frac{\lambda_e}{V_{ey'}\tau}\right)$$

Hybrid-scale kink mode [Shinohara et al., 2001;Daughton, 2003]: $\lambda \sim (\lambda_i \lambda_e)^{1/2}$

Electron Heating

Observational Facts

-- Current sheet width in the Earth magnetotail and laboratory experiment

In the Earth Magnetotail

current sheet

 \rightarrow 3-4 c/ ω_{pe} > c/ ω_{pe}

Cluster observation of normal electric field in the kinked

[Wygant et al., 2005]

West Lake International Symposium on Space Plasma Physics

09:46:30

09:46:40

09:46:50

09:47:00

In the Laboratory Experiment

Laboratory measurement performed on the MRX

[Ji et al., 2008]

Current sheet width $\sim 8 c/\omega_{pe} >> c/\omega_{pe}$ with electromagnetic waves

<u>Toward the better understanding of the dissipation</u> mechanism

The current sheet thicker than c/ω_{pe}

- Which unstable modes are responsible for the resistivity?
- How much does the wave-particle interaction contribute to the total resistivity?

Observations

Better space and time resolutions.

Numerical simulations

More realistic parameters and boundary conditions (Higher mass ratio and larger system size)

Wave-particle interaction

Summary and Conclusions

The present study has investigated the dissipation mechanism in 3D magnetic reconnection in comparison with 2D reconnection, using a large-scale PIC simulations.

Reconnection rate

 $E_R \sim 0.1$ both the cases of 2D and 3D reconnections

Dissipation mechanism

2D reconnection —> Inertia resistivity

3D reconnection —> Inertia resistivity +

Anomalous resistivity (Electron heating due to wave-particle interaction)

• Current sheet width larger than c/ω_{pe}

Both the 3D simulation and observation studies indicate the existence of some wave-particle interaction at the X-line.

Future Study

- 1. 3D PIC simulations with higher mass ratio and larger system size.
- 2. Application to the MHD-scale system.

. MHD code

Flexible boundary and initial conditions

Global Modeling

 $\boldsymbol{E} + \boldsymbol{V} \times \boldsymbol{B} = \boldsymbol{\eta} \boldsymbol{J}$

PIC code ______
Kinetic effects with microscopic structure

