Cas A 超新星残骸中の ダストの進化と熱放射

野沢 貴也

東京大学数物連携宇宙研究機構(IPMU)

共同研究者 小笹 隆司(北大), 冨永望 (国立天文台), 前田啓一(IPMU), 梅田秀之 (東大), 野本憲一 (IPMU/東大)

1-1. Introduction

O Dust in SNRs

- CCSNe are important sources of dust?
 - formation of dust in the ejecta of SNe
 - destruction of dust by the reverse shock
 - → What kind and how much amount of dust are supplied by CCSNe?
- physical processes of dust in shocked gas
 - erosion by sputtering and collisional heating
- IR thermal emission from shock-heated dust
 - structure of circumstellar medium and mass-loss history of progenitor star

young remnants of CCSNe!

1-2. Cassiopeia A SNR

O Cas A SNR

- age: ~340 yr (Thorstensen et al. 2001)
- distance: d=3.4 kpc (Reed et al. 1995)

1-3. Aim of our study

- Formation of dust in the ejecta of Type IIb SN
 - → composition, size, and mass of newly formed dust
 → dependence of dust formation process on types of SNe (on the thickness of H envelope)
- Evolution of dust in shocked gas within the SNR
 - → What fraction of newly formed dust can survive and is injected into the ISM?
- Thermal emission from shock-heated dust

→ comparison with IR observations of Cas A
 → constraint to gas density in the ambient medium

2-1. Dust formation calculation

- Meje = 2.94 Msun MH-env = 0.08 Msun Mstar = 18 Msun

$$- E_{51} = 1$$

O Dust formation calculation

 non-steady nucleation and grain growth theory

(Nozawa et al. 2003)

onion-like composition

2-2. Composition and mass of dust formed

Mass of dust formed		
dust species	$M_{\mathrm{d},j}~(M_{\odot})$	$M_{\rm d,j}/M_{\rm d,total}$
С	7.08×10^{-2}	0.423
Al_2O_3	6.19×10^{-5}	3.7×10^{-4}
$\mathrm{Mg}_2\mathrm{SiO}_4$	1.74×10^{-2}	0.104
MgSiO ₃	5.46×10^{-2}	0.326
SiO_2	1.57×10^{-2}	0.094
MgO	2.36×10^{-3}	0.014
FeS	1.47×10^{-3}	0.009
Si	5.07×10^{-3}	0.030
total	0.167	1

Macc of duct formod

Total mass of dust : 0.167 Msun in SN IIb 0.1-2 Msun in SN IIP

- various kinds of dust can condense in each layer
- condensation time: 300-700 days

2-3. Radius of dust formed in the ejecta

3-1. Calculation of dust evolution in SNRs

O Model of calculations

(Nozawa et al. 2006, 2007)

- ejecta model
 - hydrodynamic model for dust formation calculation
- ISM
 - Tgas=10⁴ K
 - $\rho(r) = M/(4 \pi r^2 v_w) g/cm^{-3}$ (M = 2x10⁻⁵ Msun/yr)
- treating dust as a test particle
 - erosion by sputtering
 - deceleration by gas drag
 - collsional heating
 - → stochastic heating

3-2. Evolution of dust in Cas A SNR

 Most of newly formed dust are destroyed in the hot gas bacause their radii are small

4-1. Time evolution of IR SEDs for Cas A SNR

4-2. Dependence of IR SED on ambient density

4-3. Contribution from circumstellar dust

<u>Summary</u>

- 1) <u>The radius of dust formed in the ejecta of Type IIb SN is</u> relatively small (< 0.01 μ m) because of low ejecta density
- 2) Small dust grains formed in Type IIb SN <u>cannot survive</u> destruction by the reverse shock
- 3) Model of dust destruction and heating in Type IIb SNR to reproduce the observed SED of Cas A is
 Md,eje = 0.06 Msun, Md,ism = 0.03-0.07 Msun
 dM/dt = 6.6x10⁻⁵ Msun/yr
 → ejecta-dust in denser clump
- 4) IR SED reflects the destruction and stochastic heating
 → density structure of circumstellar medium