la型超新星爆発時に おけるダスト形成

野沢 貴也

東京大学数物連携宇宙研究機構(IPMU)

共同研究者

前田啓一(IPMU), 野本憲一 (IPMU/東大), 小笹隆司(北大)

1-1. Introduction

O Type la SNe

- thermonuclear explosion of a C+O WD with the mass close to Chandrasekhar limit
 - subsonic deflagration?
 - supersonic (delayed) detonation?
- eject a significant amount of Fe-peak and intermediate elements such as Si, S, and Ca
 - → play a role in the cosmic chemical evolution
- abundant metals in SNe la → dust can form?

Type II SN: 0.1-1 Msun (from theories)

> 10⁻⁴ Msun (from observations)

1-2. Dust in Type Ia SNe

O Dust formation in SNe la

- SNe Ia may form a significant amount of Fe grains (e.g. Dwek 1998)
- presolar SiC grains in meteorites may be produced in SNe Ia to account for their isotopic signatures (Clayton et al. 1997)
- no clear decrease of light curve by dust absorption
- no IR dust emission as well as CO molecules
 SN 2003hv, SN 2005bv at 100-300 days
 (Gerardy et al. 2007)
- no detection of ejecta-dust in Tycho SNR

(e.g., Douvion et al. 2001)

1-3. Aim of our study

- Is it possible for dust grains to condense in the ejecta of Type Ia SN?
- What is the difference in formation process of dust between SNe Ia and SNe II?

- chemical composition, size, and mass of newly formed dust
- dependence of dust formation process on types of SNe
- implication on nuclear burning in SNe la

2-1. Calculation of dust formation

O nucleation and grain growth theory (Nozawa et al. 2003)

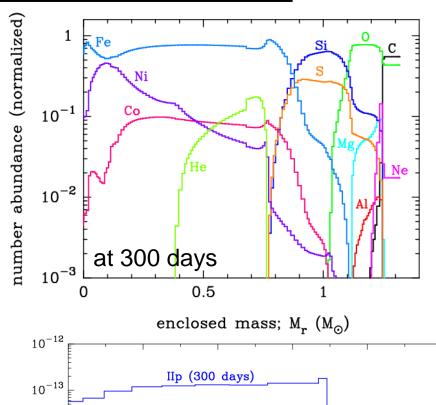
steady-state nucleation rate

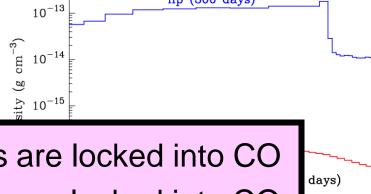
$$J_j^s(t) = \alpha_{sj}\Omega_j \left(\frac{2\sigma_j}{\pi m_{1j}}\right)^{1/2} \left(\frac{T}{T_d}\right)^{1/2} \Pi_j c_{1j}^2 \exp\left[-\frac{4}{27} \frac{\mu_j^3}{(\ln S_j)^2}\right],$$

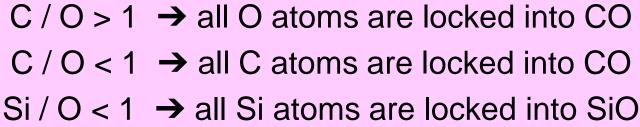
grain growth rate

$$\frac{\partial r}{\partial t} = \alpha_s \frac{4\pi a_0^3}{3} \left(\frac{kT}{2\pi m_1}\right)^{\frac{1}{2}} c_1(t) = \frac{1}{3} a_0 \tau_{\text{coll}}^{-1}$$

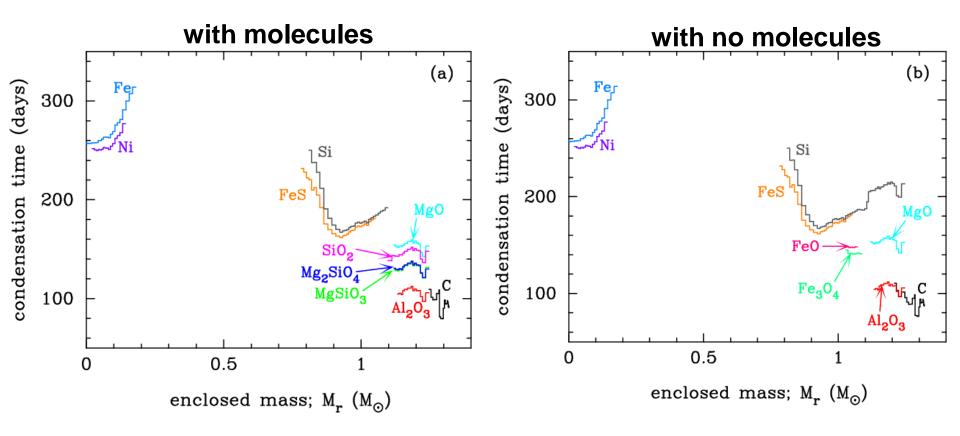
- key species:
 a gas species with the least collision frequency among reactants
- sticking probability; $\alpha_s = 1, 0.1, 0.01$
- Tdust = Tgas (dust temperature is the same as that of gas)

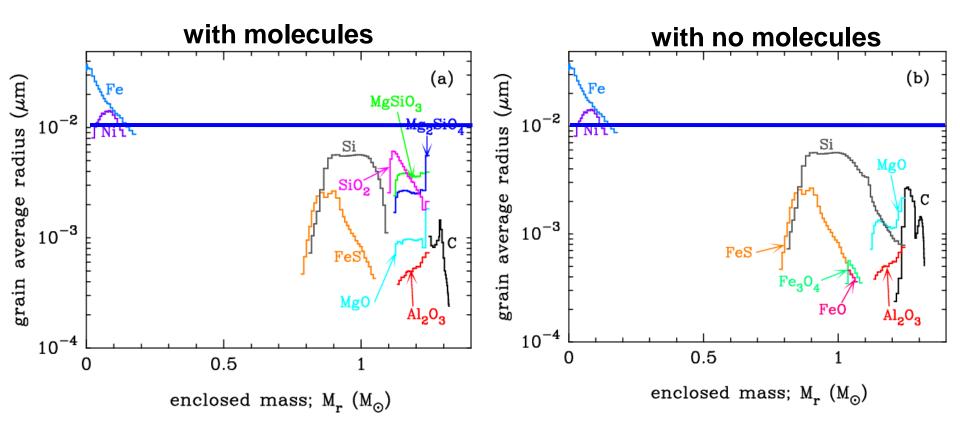

2-2. Dust formation calculation for SN la


O Type Ia SN model


W7 model (C-deflagration)

(Nomoto et al. 1984)


- Meje = 1.32 Msun
- $-E_{51} = 1.3$
- $M(^{56}Ni) = 0.56 Msun$
- onion-like composition (no mixing of elements)
- formation efficiency of
 CO and SiO → 0 or 1

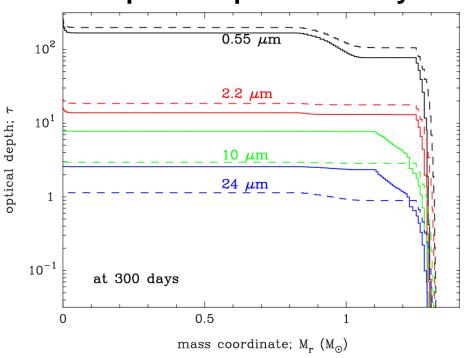


3-1. Condensation time of dust

- Various species of dust condense in each layer
- species of dust depends on formation of molecules
- condensation time of dust: 100-300 days

3-2. Average radii of dust

- average radius of Fe and Ni : ~ 0.01 µm
- average radius of other dust species : < 0.01 μm
 because of low density of gas in the expanding ejecta


3-3. Mass of dust formed in SN la

dust species	A1	A0.1	A0.01	B1	B0.1	B0.01
C	2.00×10^{-2}	1.15×10^{-3}	5.10×10^{-7}	2.89×10^{-2}	1.84×10^{-2}	1.98×10^{-4}
MgO	4.32×10^{-6}	2.35×10^{-9}	7.70×10^{-12}	9.49×10^{-6}	2.64×10^{-9}	8.09×10^{-12}
$MgSiO_3$	8.18×10^{-3}	1.48×10^{-6}	1.59×10^{-9}	0	0	0
Mg_2SiO_4	7.32×10^{-3}	1.66×10^{-6}	2.46×10^{-9}	0	0	0
SiO_2	$1.46 imes 10^{-2}$	1.01×10^{-5}	5.16×10^{-9}	0	0	0
Al_2O_3	1.07×10^{-6}	9.25×10^{-10}	6.07×10^{-12}	1.16×10^{-6}	9.63×10^{-10}	6.25×10^{-12}
Fe_3O_4	3.34×10^{-7}	3.11×10^{-13}	2.99×10^{-15}	4.09×10^{-7}	6.37×10^{-10}	4.86×10^{-12}
FeO	5.33×10^{-10}	7.16×10^{-14}	6.95×10^{-16}	6.96×10^{-8}	1.50×10^{-10}	1.22×10^{-12}
FeS	1.66×10^{-2}	1.45×10^{-5}	1.34×10^{-8}	1.66×10^{-2}	1.45×10^{-5}	1.34×10^{-8}
Si	6.13×10^{-2}	3.15×10^{-5}	$2.23 imes 10^{-8}$	6.48×10^{-2}	$3.23 imes 10^{-5}$	2.38×10^{-8}
Fe	$1.43 imes 10^{-4}$	$1.63 imes 10^{-8}$	4.39×10^{-12}	1.43×10^{-4}	$1.63 imes 10^{-8}$	4.39×10^{-12}
Ni	7.28×10^{-6}	9.73×10^{-10}	5.60×10^{-13}	7.28×10^{-6}	9.73×10^{-10}	5.60×10^{-13}
Total	1.28×10^{-1}	1.21×10^{-3}	5.55×10^{-7}	1.10×10^{-1}	1.84×10^{-2}	1.98×10^{-4}

- Total mass of dust formed in SNe la: Mdust < 0.13 Msun
- Fe and SiC grains cannot condense significantly

4-1. Optical depth by dust

For $\alpha s=1$,

τ(0.55) ~ 200 at 300 days τ(0.55) ~ 100 by C grains τ(0.55) ~ 100 by Si and FeS

→ too high to be consistent with observations

early formation of dust → 100-300 days high M(⁵⁶Ni) → ~0.6 M_{sun}

→ Can newly formed dust survive against strong radiation field in the ejecta?

4-2. Dust temperature

44

43

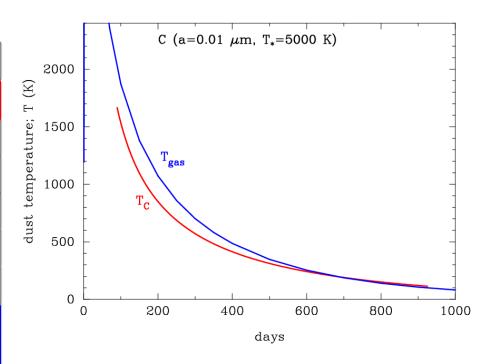
41

40

og(L) (ergs s^{-1})

$$4\pi a^2 \sigma_{\rm B} T_{\rm d}(r)^4 \langle Q_{\lambda}(a, T_{\rm d}) \rangle = \frac{F(r)}{\sigma_{\rm B} T_{\rm BB}^4} \int \pi a^2 Q_{\lambda}(a) B_{\lambda}(T_{\rm BB}) d\lambda$$

 $T_{\rm d}(r)$: equilibrium temperature of dust at a position r


F(r): flux at a position r

(radiating as a blackbody with $T_{PP} = 5000 \text{K}$) Si (a=0.01 μ m, T_{*}=5000 K) $\langle Q_{\lambda}(a, T_{\rm d}) \rangle$: Plank-a 2000 dust temperature; 1500 $F(r) = L / 4 \pi r^2$ 1000 $\mathbf{T}_{\texttt{gas}}$ 500 0 200 400 600 800 1000 100 200 300 time after explosion (days) days

4-3. Mass of dust survived

Mass of dust formed

dust species	$M_{1,\mathrm{d},j} \ (M_{\odot})$	$M_{2,\mathrm{d},j} \ (M_{\odot})$
С	2.00×10^{-2}	2.00×10^{-2}
Al_2O_3	1.07×10^{-6}	1.07×10^{-6}
Mg ₂ SiO ₄	7.32×10^{-3}	7.32×10^{-3}
$MgSiO_3$	8.18×10^{-3}	8.18×10^{-3}
SiO_2	1.46×10^{-2}	1.46×10^{-2}
MgO	4.32×10^{-6}	4.32×10^{-6}
FeS	1.66×10^{-2}	3.63×10^{-4}
Si	6.13×10^{-2}	1.38×10^{-7}
Fe	1.43×10^{-4}	7.72×10^{-6}
Ni	7.28×10^{-6}	
total	1.28×10^{-1}	5.01×10^{-2}

There is no evidence that C has been detected in SN Ia

If we ignore C grains in SN la

Mdust ~ 0.03 Msun (silicate)

 $T(0.55) \sim 1$ at 300 day

Summary

- 1) Dust formed in the ejecta of SNe la
 - various grain species with average radius : < 0.01 μm
 - upper limit of total dust mass: ~0.13 Msun
- 2) Strong radiation field in the ejecta of SNe la
 - → destroy most of FeS and Si but not C and silicate dust mass : < 0.05 M_{sun}
- 3) Formation of C grains is inconsistent with observations
 - → preexisting C should be burned by nuclear burning absence of C layer → dust mass : < 0.03 Msun</p>
- 4) Newly formed dust grains of < 0.01µm may not be able to survive the reverse shock due to their small radii (Nozawa et al. submitted, arXiv/0909.4145)