Formation of Dust in the Ejecta of Type Ia Supernovae

Takaya Nozawa

IPMU (Institute for the Physics and Mathematics of the Universe, University of Tokyo)

Collaborators:

K. Maeda (IPMU), T. Kozasa (Hokkaido University)

M. Tanaka, K. Nomoto (IPMU), H. Umeda (Univ. of Tokyo)

Submitted to ApJ

1-1. Introduction

O Type la supernovae (SNe la)

- thermonuclear explosions of C+O white dwarfs with the mass close to Chandrasekhar limit (~1.4 Msun)
 - deflagration (Nomoto+76, 84)
 - → subsonic wave, unburned C in the outer layer
 - (delayed) detonation (Khokhlov91a, 91b)
 - → supersonic wave, burning almost all C
- synthesize a significant amount of Fe-peak and intermediate-mass elements such as Si, Mg, and Ca
 - → play a critical role in the chemical evolution
 - → possible sources of interstellar dust?

1-2. Type la SNe are sources of dust?

O Suggestions on dust formation in SNe la

- SNe Ia may be producers of <u>Fe grains</u> (Tielens98; Dwek98)
- the isotopic signature of presolar type X <u>SiC grains</u> can be explained if produced in SNe Ia (Clayton+97)

O Observations of normal SNe la

- no increase of IR dust continuum (and no CO emission)
- no rapid decrease of the optical light curve
- no blueshift of atomic line emissions

→ these signatures have been reported for CCSNe

no evidence for ejecta-dust in Tycho SNR (Douvion+01)

1-3. Aim of our study

O Questions

- Are there any differences in formation process of dust between SNe Ia and (Type II) CCSNe?
- Is it possible for dust grains to form in SNe Ia ?

O Dust formation calculation in SNe la

- → chemical composition, size, and mass of dust that can condense in the ejecta of SNe Ia
- → dependence of dust formation process on SN types
- → implication on the outermost layer in SNe la
- → survival of the newly formed dust against destruction by the reverse shock

2-1. Model of SNe Ia (1)

O Type la SN model

- C-deflagration W7 model (Nomoto+84; Thielemann+86)
- Meje = 1.38 Msun
- $E_{kin} = 1.3 \times 10^{51} \text{ erg}$
- M(⁵⁶Ni) = 0.6 Msun
 - ## M(⁵⁶Ni) ~ 0.06 Msun in typical CCSNe

elemental composition

enclosed mass; $\mathrm{M_r}~(\mathrm{M_{\odot}})$

- stratified distribution (no mixing of elements)
 - ## This assumption is supported observationally (e.g. Mazzali+08; Tanaka+11)

0.1 Msun of C and O remained unburned in the outermost layer with Mc/Mo ~ 1

2-2. Model of SNe Ia (2)

2-3. Calculation of dust formation

O nucleation and grain growth theory

(Nozawa+03, 08, 10)

- steady-state nucleation rate

$$J_j^s(t) = \alpha_{sj} \Omega_j \left(\frac{2\sigma_j}{\pi m_{1j}}\right)^{1/2} \left(\frac{T}{T_d}\right)^{1/2} \Pi_j c_{1j}^2 \exp\left[-\frac{4}{27} \frac{\mu_j^3}{(\ln S_j)^2}\right],$$

- grain growth rate

$$\frac{\partial r}{\partial t} = \alpha_s \frac{4\pi a_0^3}{3} \left(\frac{kT}{2\pi m_1}\right)^{\frac{1}{2}} c_1(t) = \frac{1}{3} a_0 \tau_{\text{coll}}^{-1}$$

- sticking probability : $\alpha = 1$ and 0.1
- LTE condition : Td = T

(dust has the same temperature as the gas)

The use of the same prescription enables the direct comparison with our earlier results

3-1. Results (1): Condensation time of dust

3-2. Results (2): Average radius of dust

3-3. Results (3): Mass of each dust species

	α = 1	α = 0.1		
dust species	A1	A0.1		
С	5.66×10^{-3}	2.84×10^{-4}	Мс	= 0.006 M sun
MgO	$3.17 imes10^{-6}$	1.85×10^{-9}		
$MgSiO_3$	7.59×10^{-3}	1.31×10^{-6}		
Mg_2SiO_4	$7.01 imes 10^{-3}$	1.50×10^{-6}	M silicat	te = 0.030 M sun
SiO_2	1.47×10^{-2}	9.94×10^{-6}		
Al_2O_3	8.18×10^{-7}	7.48×10^{-10}		
FeS	$1.78 imes10^{-2}$	$1.53 imes 10^{-5}$	MFeS	= 0.018 Msun
Si	6.30×10^{-2}	3.15×10^{-5}	MSi	= 0.063 Msun
${\rm Fe}$	9.52×10^{-5}	1.09×10^{-8}		
Ni	1.48×10^{-6}	2.22×10^{-10}		
Total	$1.16 imes10^{-1}$	$3.44 imes 10^{-4}$	Mtotal	= 0.116 M sun

Total mass of dust formed in SNe Ia : Mdust < ~0.1 Msun

4-1. Optical depths by newly formed dust

Formation of dust grains (C, Si, and Fe) should be suppressed to be consistent with the observations

4-2. Non-LTE effect on dust formation

$$4\pi a^2 \sigma_{\rm B} T_{\rm d}(r)^4 \langle Q_\lambda(a, T_{\rm d}) \rangle = \frac{F(r)}{\sigma_{\rm B} T_{\rm BB}^4} \int \pi a^2 Q_\lambda(a) B_\lambda(T_{\rm BB}) d\lambda$$

 $T_{\rm d}(r)$: equilibrium temperature of dust at a position r

F(r): flux at a position r

(radiating as a blackbody with $T_{BB} = 5000$ K)

 $\langle Q_{\lambda}(a, T_{\rm d}) \rangle$: Plank-averaged value of $Q_{\lambda}(a)$

Non-LTE dust formation

$$MFeS = 4x10^{-4} Msun$$

→ TFeS < 0.1 after 300 day

Mc = 0.0055 Msun

→ TC > 20 (too high to be consistent with the observations)

4-3. Infrared thermal emission from dust

4-4. Carbon dust and outermost layer of SNe la

O Formation of massive carbon dust

- high sticking probability of α = 0.1-1
 if α < ~0.01, any dust grain cannot condense
- dust formation around 100 days, M(56Ni) ~ 0.6 Msun
 dust formation can be destroyed by energetic photons and electrons prevailing in the ejecta
- massive unburned carbon (~0.05 M_{sun}) in deflagration
 change of WD composition by the He-shell flash
 - → burning of carbon by a delayed detonation wave

observationally estimated carbon mass in SNe Ia : Mc < 0.01 Msun (Marion+06; Tanaka+08)

4-5. Dust formation in super-Chandra SNe?

rest wavelength [Å]

SN 2009dc, Tarbenberger+10

5-1. Destruction of dust in Type Ia SNRs

newly formed grains are completely destroyed for ISM density of $n_{\rm H} > 0.1 \ {\rm cm}^{-3}$

SNe la are unlikely to be major sources of dust

<u>Summary</u>

- For α = 1, C, silicate, Si, and FeS grains can condense in the ejecta of SNe Ia at 100-300 days, being earlier than >300 days in SNe II-P.
- Due to the low gas density in the ejecta, the average radii of dust grains are below 0.01 μ m, being smaller than those in SNe II-P.
- The total mass of dust that can form in the ejecta of SNe Ia is up to
 0.1 Msun. (0.03 Msun of silicate is more conservative.)
- Formation of C grains is inconsistent with the observations
 → low sticking probabilities of α < ~0.01
 → small C clusters can be destroyed by photons and electrons
 → preexisting C should be almost completely burned
- For the ISM density of nH,0 > 0.1 cm⁻³, the newly formed grains are almost completely destroyed before being injected into the ISM.
 → SNe Ia are likely to be poor producers of interstellar dust