Formation of Dust Grains by Supernova Explosion

Takaya Nozawa

(IPMU, University of Tokyo)

Collaborators:

T. Kozasa, A. Habe (Hokkaido Univ.),

K. Maeda, K. Nomoto, M. Tanaka (IPMU),

N. Tominaga (Konan Univ.), <u>H. Umeda, I. Sakon</u> (U.T.)

2011/2/25

1. Introduction

- 2. Formation and evolution of dust grains in Type II-P and pair-instability SNe
- 3. Formation and evolution of dust grains in various types of SNe
- 4. Missing-dust problem in SNe
- **5. Conclusion remarks**

1. Introduction

1-1. Interstellar dust in our Galaxy

• Dust in our Galaxy → when and where is dust formed?

composition : graphite (carbonaceous) silicate (SiO₂, Mg₂SiO₄, MgFeSiO₄...)

size : $n(a) = f(a)da = a^{-3.5} da (0.005 \sim 0.25 \mu m)$

amount :

extinction curve IR spectral feature depletion of elements depletion of elements bits bits depletion of elements bits depletion of elements

1-2. Discovery of large amounts of dust at z > 5

 The submm observations have confirmed the presence of dust in excess of 10⁸ M_{sun} in 30% of z > 5 quasars
 → We see warm dust grains heated by absorbing stellar lights in the host galaxies of the quasars

- age : 840-890 Myr

- IR luminosity : ~(1-3)x10¹³ Lsun
- dust mass : (2-7)x10⁸ Msun
- SFR : ~3000 Msun/yr (Salpeter IMF)
- gas mass : ~3x10¹⁰ Msun (Walter+04)
- metallicity : ~solar

1-3. What are sources of dust in high-z quasar?

Supernovae (Type II SNe)

→ ~0.1 Msun per SN is sufficient (Morgan & Edmunds 2003; Maiolino+06; Li+08)

→ > 1 Msun per SN (Dwek+07)

• AGB stars + SNe

(Valiante+09; Gall+10; Dwek & Cherchneff 2011)

- → 0.01-0.05 Msun per AGB (Zhukovska & Gail 2008)
- → 0.01-1 Msun per SN
- Grain growth in the ISM + AGB stars + SNe

(Draine 2009; Michalowski+10; Pipino+11)

- → Tgrowth ~ 10^7 (Z / Zsun) yr
- Quasar outflow (Elvis+02)

1-4. Extinction curves at high-z quasars

1-5. Death of single massive stars

At high metallicity • Type II-P SNe: MZAMS=8-25 Msun? massive H envelope • Type IIb SNe: $Mz_{AMS} = 25-35 Msun?$ very thin H-envelope • Type lb/lc SNe : MZAMS > 35 Msun? no H / He envelope

 Type la SNe : thermonuclear explosion of C+O white dwarfs Mpre-explosion ~ 1.4 Msun

2. Formation and evolution of dust in Population III SNe

2-1. Dust Formation in Supernovae

2-1-1. Dust formation in primordial SNe

Nozawa+03, ApJ, 598, 785

O Population III SNe model (Umeda & Nomoto 2002)

- SNe II-P : Mzaмs = 13, 20, 25, 30 Msun (E₅₁=1)
- **PISNe** : Mzams = 170 Msun (E_{51} =20), 200 Msun (E_{51} =28)

- nucleation and grain growth theory (Kozasa & Hasegawa 1988)
- no mixing of elements within the He-core
- complete formation of CO and SiO

2-1-2. Nucleation rate of dust

Steady-state classical homogeneous nucleation rate $J_s(t) = \alpha_s \Omega \left(\frac{2\sigma}{\pi m_1}\right)^{\frac{1}{2}} \Pi c_1^2(t) \exp\left[-\frac{4}{27} \frac{\mu^3}{(\ln S)^2}\right]$

Supersaturation ratio

$$\ln S = \ln \frac{P_i}{P_{i,\text{eq}}} = -\frac{\Delta G^0}{kT} + \sum_i \nu_i \ln P_i$$

 α_s : sticking probability of key species ($\alpha_s = 1$, in the calculations)

 Ω : volume of the condensate per key species $(\Omega=4\pi a_0^3/3)$

- σ : surface energy of the condensate
- m_1 : mass of key species

$$c_1(t)$$
: number density of key species

 μ : $\mu \equiv 4\pi a_0^2 \sigma/kT$; energy barrier for nucleation

2-1-3. Basic equations of dust formation

Equation of conservation for key species

$$\begin{split} 1 - \frac{c_1(t)}{\tilde{c_1}(t)} &= \int_{t_0}^t \frac{J(t')}{\tilde{c_1}(t')} \frac{4\pi}{3\Omega} r^3(t,t') dt' \\ V(t)\tilde{c_1}(t) - V(t)c_1(t) &= \int_{t_0}^t V(t')J(t')n[r(t,t')] dt' \\ \hline \overline{\partial t} &= \alpha_s \overline{3} \left(\frac{2\pi m_1}{2\pi m_1} \right)^{-c_1(t)} = \overline{3}^{a_0\tau_{\text{coll}}} \\ \hline \frac{\partial V_{\text{d}}}{\partial t} &= 4\pi r^2 \frac{\partial r}{\partial t} = \alpha_s \Omega 4\pi r^2 \langle v \rangle c_1(t) \\ \hline \tau_{\text{coll}}^{-1}(t) &= 4\pi a_0^2 \alpha_s \left(\frac{kT}{2\pi m_1} \right)^{\frac{1}{2}} c_1(t) \\ \cdot ra \int_{t_0}^{t_0} r_{(t,t_0)} = r_* + \int_{t_0}^t \frac{1}{3} a_0 \tau_{\text{coll}}^{-1}(t') dt' \end{split}$$

2-1-4. Dust formed in primordial SNe

- Various dust species (C, MgSiO₃, Mg₂SiO₄, SiO₂, Al₂O₃, MgO, Si, FeS, Fe) form in the unmixed ejecta, according to the elemental composition of gas in each layer
- The condensation time: 300-600 days for SNe II-P 400-800 days for PISNe

2-1-5. Size distribution of newly formed dust

- grain radii range from a few A up to 1 µm
- average dust radius is smaller for PISNe than SNe II-P

amount of newly formed dust grains SNe II-P: Mdust = 0.1-1 Msun, fdep = Mdust / Mmetal = 0.2-0.3 PISNe : Mdust = 20-40 Msun, fdep = Mdust / Mmetal = 0.3-0.4

2-2. Dust Evolution in SNRs

2-2-1. Temperature and density of gas in SNRs

Nozawa+07, ApJ, 666, 955

Model :
$$M_{pr}$$
= 20 Msun (E₅₁=1)
n_{H,0} = 1 cm⁻³

Downward-pointing arrows: forward shock in upper panel reverse shock in lower panel

The temperature of the gas swept up by the shocks → 10⁶-10⁸ K ↓ Dust grains residing in the shocked hot gas are eroded by sputtering

2-2-2. Evolution of dust in SNRs

Nozawa+07, ApJ, 666, 955

Model : M_{pr} = 20 Msun (E₅₁=1) $n_{H,0}$ = 1 cm⁻³

Dust grains in the He core collide with reverse shock at (3-13)x10³ yr

The evolution of dust heavily depends on the initial radius and composition

 $a_{ini} = 0.01 \ \mu m$ (dotted lines)

- → completely destroyed
- a_{ini} = 0.1 μm (solid lines)
 - → trapped in the shell
- a_{ini} = 1 μm (dashed lines)
 - → injected into the ISM

2-2-3. Total mass and size of surviving dust

Nozawa+07, ApJ, 666, 955

3. Formation and evolution of dust in various types of SNe

3-1-1. Dust formation in Type IIb SN

Nozawa+10, ApJ, 713, 356

O SN IIb model (SN1993J-like model)

3-1-2. Dependence of dust radii on SN type

- condensation time of dust
 300-700 d after explosion
- total mass of dust formed
 - 0.167 Msun in SN IIb
 - 0.1-1 Msun in SN II-P

- the radius of dust formed in H-stripped SNe is small
 - SN IIb without massive H-env → adust < 0.01 µm
 - SN II-P with massive H-env → adust > 0.01 µm

3-1-3. Destruction of dust in Type IIb SNR

Almost all newly formed grains are destroyed in shocked gas within the SNR for CSM gas density of nH > 0.1 /cc → small radius of newly formed dust

→ early arrival of the reverse shock at the He core

3-1-4. Dust in Cassiopeia A

 unshocked dust : Md,cool ~ 0.072 Msun with Tdust ~ 40 K

AKARI corrected 90 µm image

Declination

Tdust = 33-41 K

(Sibthorpe+10)

Herschel observation
Md,cool = 0.075 Msun

Tdust ~ 35 K (Barlow+10)

3-2-1. Dust formation in Type Ia SN

O Type Ia SN model

number abundance (normalized)

W7 model (C-deflagration) (Nomoto+84; Thielemann+86)

Meje = 1.38 Msun (a) Temperature gas temperature (K) 10^{4} $-E_{51} = 1.3$ - M(⁵⁶Ni) = 0.6 Msun 10³ 10⁻¹¹ cm⁻³) (b) Density 1 Fe 10⁻¹² 10^{-13} ٩ 10^{-14} density 100 day 10^{-15} 300 day 10^{-1} 10⁻¹⁶ 10⁻¹⁷ 10⁻¹⁸ gas velocity (km s⁻¹) (c) Velocity 10⁴ 10⁻² Type Ia 10³ Type II-P 10^{-3} 10² 0.5 0 1 0.2 0.4 0.6 0.8 normalized enclosed mass; M_r/M_a

enclosed mass; M_r (M_{\odot})

3-2-2. Dust formation and evolution in SNe Ia

Nozawa+11, submitted

 total dust mass : Mdust = 0.1-0.2 Msun

newly formed grains are completely destroyed for ISM density of n_H > 0.1 cm⁻³

→ SNe la are unlikely to be major sources of dust

4. Missing-dust problem in SNe

4-1. SNe are important sources of dust?

Theoretical studies

- at dust formation : <u>~0.1-1 Msun</u> in CCSNe (SNe II-P) (Nozawa+03; Todini & Ferina 2001; Cherchneff & Dwek 2010)
- after destruction of dus py reverse shock : <u>~0.01-0.5 Msun</u> (Nozawa 7; Bianchi & Schneider 2007)

dust amount needed to explain massive dust at high-z!

- Observational works
 - MIR observations of dust-forming SNe : < 10⁻³ Msun (e.g., Ercolano+07; Sakon+09; Kotak+09)
 - submm observations of SNRs : <u>>1 Msun</u> (Dunne+03; Morgan+03; Dunne+09; Krause+05)
 - MIR-FIR observation of Cas A SNR : <u>0.02-0.075 Msun</u> (Rho+08; Sibthorpe+09; Barlow+10)

4-2. Missing-dust problem in CCSNe

Tanaka, TN, +11, submitted

4-3. Detectability of dust with SPICA

4-4. Detectability of cold dust with ALMA

5. Conclusion remarks

5-1. Implication on evolution history of dust (1)

O metal-poor (high-z or starbust) galaxies

- massive stars (SNe) are dominate
- mass loss of massive stars would be less efficient
- → Type II-P SNe might be major sources of dust
 - aave is relatively large (> 0.01 µm)
 - grain growth makes grain size larger
- → dust extinction curve might be gray

Hirashita, TN,+08, MNRAS, 384, 1725

5-2. Implication on evolution history of dust (2)

O metal-rich (low-z or Milky Way) galaxies

- low-mass stars are dominate
- mass loss of massive stars would be more efficient
- → SNe (IIb, Ib/c, Ia) might be minor sources of dust
 - dust from AGB stars may also be large (0.01-0.1 μm)
- → How are small dust grains produced? shattering process?

5-3. Future prospects

→ SNe are important sources of dust?

- maybe, Yes in the early universe
- at least, to serve the seeds for grain growth in the ISM
- → composition, size, and mass of dust?
 - SPICA will make great advances on this issue
- → theoretical and experimental approach is essential!
 - nucleation process, crystalization
 - dust temperature, optical properties
- → application to other dust formation site
 - novae, mass-loss wind of AGB and massive stars
 - grain growth and processing in the molecular clouds

evolution history of dust throughout the cosmic age!