Supply of dust from supernovae: Theory vs. Observation

(超新星爆発によるダストの供給: 理論 vs. 観測)

Takaya Nozawa

(IPMU, University of Tokyo)

Collaborators:

T. Kozasa, A. Habe (Hokkaido Univ.),

K. Maeda, K. Nomoto, M. Tanaka (IPMU),

<u>N. Tominaga</u> (Konan Univ.), <u>H. Umeda, I. Sakon</u> (U.T.)

2011/07/20

1. Introduction

2. Formation and evolution of dust in Type IIb SNe with application to Cassiopeia A SNR

3. Missing-dust problem in core-collapse SNe

4. Formation of dust in the ejecta of SNe la

5. Summary

1. Introduction

1-1. Discovery of massive dust at z > 5 quasars

 The submm observations have confirmed the presence of dust in excess of 10⁸ M_{sun} in 30% of z > 5 quasars
 → We see warm dust grains heated by absorbing stellar lights in the host galaxies of the quasars

Leipski+'10, A&A, 518, L34

- age : ~900 Myr (z=6.42)
- IR luminosity : ~(1-3)x10¹³ Lsun
- dust mass : (2-7)x10⁸ Msun
- SFR : ~3000 Msun/yr (Salpeter IMF)
- gas mass : ~3x10¹⁰ Msun (Walter+'04)
- metallicity : ~solar

1-2. What are dust sources in high-z quasars?

Supernovae (Type II SNe)

- → ~0.1 Msun per SN is sufficient (Maiolino+'06; Li+'08)
- → > 1.0 Msun per SN (Dwek+'07, Gall+'10, '11)
- AGB stars + SNe

(Valiante+'09; Dwek & Cherchneff'11)

- → 0.01-0.05 Msun per AGB (Zhukovska & Gail '08)
- → 0.01-1.0 Msun per SN
- Grain growth in dense clouds + AGB stars + SNe

(Draine'09; Michalowski+'10; Pipino+'11; Mattsson'11, Valiante+'11, Asano+'11)

Quasar outflows (Elvis+'02)

1-3. Dust formation in primordial supernovae

Supernovae are important sources of dust?

- Evolution of dust throughout the cosmic age
 - A large amount of dust (> 10⁸ Msun) in z > 5 quasars
 → 0.1-1.0 Msun of dust per SN must be ejected
 - Inventory of interstellar dust in our Galaxy
- Theoretical studies on dust formation in the SN ejecta (Todini & Ferrara'01; Nozawa+'03; Schneider+'04; Bianchi & Schneider+'07; Cherchneff & Dwek'09, '10)
 - Mdust=0.1-1 Msun in (primordial) Type II-P SNe (SNe II-P)
 - <u>Mdust=1</u>-60 Msun in pair-instability SNe (PISNe)

its presence has not been proved observationally!!

1-4. Dust destruction in supernova remnants

- a part of dust grains formed in SNe are destroyed due to sputtering in the hot gas swept up by the shocks (e.g., Bianchi & Schneider'07; Nozawa+'07, '10)
 - → destruction efficiency of dust depends on the initial size distribution
- It is necessary to treat formation and destruction of dust self-consistently

1-5. Mass and size of dust ejected from SN II-P

2. Formation and evolution of dust in SNe IIb: Application to Cas A

2-1. Dust formation in Type IIb SN

O SN IIb model (SN1993J-like model)

2-2. Dependence of dust radii on SN type

2-3. Destruction of dust in Type IIb SNR

 $n_{H,1} = 30, 120, 200 / cc \rightarrow dM/dt = 2.0, 8.0, 13x10^{-5} M_{sun}/yr$ for vw=10 km/s

Almost all newly formed grains are destroyed in shocked gas within the SNR for CSM gas density of $n_{\rm H} > 0.1$ /cc

→ small radius of newly formed dust

→ early arrival of reverse shock at dust-forming region

Nozawa et al. 2010, ApJ, 713, 356

2-4. IR emission from dust in Cas A SNR

Nozawa et al. 2010, ApJ, 713, 356

AKARI corrected 90 µm image

AKARI observation Md,cool = 0.03-0.06 Msun Tdust = 33-41 K (Sibthorpe+'10)

Herschel observation Md,cool = 0.075 Msun Tdust ~ 35 K (Barlow+'10)

3. Missing-dust problem in CCSNe

3-1. Difference in estimate of dust mass in SNe

Theoretical studies

— at time of dust formation : Mdust=0.1-1 Msun in CCSNe (Nozawa+'03; Todini & Ferrara'01 herchneff & Dwek'10)

 after destruction of dust by revers Msurv~0.01-0.8 Msun (Nozawa+'07- janchi & Schneider'07)

shock (SNe II-P) :

dust amount needed to explain massive dust at high-z

- Observational works
 - NIR/MIR observations of SNe : Mdust < 10⁻³ Msun (e.g., Ercolano+'07; Sakon+'09; Kotak+'09)
 - submm observations of SNRs : Mdust > 1 Msun (Dunne+'03; Morgan+'03; Dunne+'09)
 - MIR/FIR observation of Cas A : Mdust=0.02-0.075 Msun (Rho+'08; Sibthorpe+'09; Barlow+'10)

3-2. Missing-dust problem in CCSNe

3-3. Search for dust in middle-aged CCSNe

3-4. Estimate of dust mass in middle-aged SNe

3-5. Temp. of cool dust and its detectability

3-6. Herschel detects massive dust in SN 1987A

4. Formation of dust in SNe la

4-1. Introduction

O Type la supernovae (SNe la)

- thermonuclear explosions of C+O white dwarfs with the mass close to Chandrasekhar limit (~1.4 Msun)
 - deflagration (Nomoto+76, 84)
 - → subsonic wave, unburned C in the outer layer
 - (delayed) detonation (Khokhlov91a, 91b)
 - → supersonic wave, burning almost all C
- synthesize a significant amount of Fe-peak and intermediate-mass elements such as Si, Mg, and Ca
 - → play a critical role in the chemical evolution
 - → possible sources of interstellar dust?

4-2. Type la SNe are sources of dust?

O Suggestions on dust formation in SNe la

- SNe Ia may be producers of <u>Fe grains</u> (Tielens98; Dwek98)
- the isotopic signature of presolar type X <u>SiC grains</u> can be explained if produced in SNe Ia (Clayton+'97)

O Observations of normal SNe la

- no increase of IR dust continuum (and no CO emission)
- no rapid decrease of the optical light curve
- no blueshift of atomic line emissions

→ these signatures have been reported for CCSNe

- no evidence for ejecta-dust in Tycho SNR (Douvion+'01)

4-3. Dust formation in Type Ia SNe

O Type Ia SN model

W7 model (C-deflagration) (Nomoto+'84; Thielemann+'86)

10⁴

- M_{eje} = 1.38 Msun
- $-E_{51} = 1.3$
- M(⁵⁶Ni) = 0.6 Msun

(a) Temperature

4-4. Dust formation and evolution in SNe la

4-5. Optical depths by newly formed dust

4-6. Infrared thermal emission from dust

4-7. Carbon dust and outermost layer of SNe la

O Formation of massive carbon dust

- high sticking probability of α = 0.1-1
 if α < ~0.01, any dust grain cannot condense
- dust formation around 100 days, M(56Ni) ~ 0.6 Msun
 dust formation can be destroyed by energetic photons and electrons prevailing in the ejecta
- massive unburned carbon (~0.05 M_{sun}) in deflagration
 change of WD composition by the He-shell flash
 - → burning of carbon by a delayed detonation wave

observationally estimated carbon mass in SNe Ia : Mc < 0.01 Msun (Marion+06; Tanaka+08)

4-8. Dust formation in super-Chandra SNe?

5. Summary of this talk

- Size of newly formed dust depends on types of SNe
 - H-retaining SNe (Type II-P) : aave > 0.01 μm
 - H-stripped SNe (Type IIb/Ib/Ic and Ia) : aave < 0.01 μm
 → dust is almost completely destroyed in the SNRs

→ H-stripped SNe may be poor producers of dust

- Our model treating dust formation and evolution self-consistently can reproduce IR emission from Cas A
- <u>Middle-aged SNe with the ages of 10-100 yr are good targets to</u> measure the mass of dust formed in SNe
 - We detect emission from SN 1978K, which is likely from shocked circumstellar silicate dust with 1.3x10⁻³ Msun
 - The non-detection of the other 6 objects seems to be natural because our present search is sensitive only to Ltot >10³⁸ erg/s
- Mass of dust in young SNRs may be dominated by cool dust
 - → FIR and submm observations of SNRs are essential
 - → Herschel detects massive cool dust toward SN 1987A