Dust Enrichment by Supernova Explosions

Takaya Nozawa

(IPMU, University of Tokyo)

Collaborators:

T. Kozasa, A. Habe (Hokkaido Univ.),

<u>K. Maeda, K. Nomoto, M. Tanaka</u> (IPMU),

<u>N. Tominaga</u> (Konan Univ.), <u>H. Umeda (Univ. of Tokyo)</u>

2011/08/10

How does the cmic dust evolvethroughoutcosmic age?

When and how did the universe begin to be enriched with dust?

1-1. Discovery of huge amounts of dust at z > 5

There has been clear evidence for the presence of a large amount of dust (>10⁸ M_{sun}) in quasars at z > 5 (t < 1.2 Gyr)

What is the origin of massive dust?

core-collapse SNe (Type II SNe)

→ ~0.1-1 Msun per SN is needed (Maiolino+'06; Dwek+'07; Gall+'11)

- AGB stars + SNe (Valiante+'09; Dwek & Cherchneff'11)
 → 0.01-0.05 Msun per AGB stars
- Grain growth in ISM + AGB stars + SNe (Draine'09; Michalowski+'10; Pipino+'11; Asano-san' talk)

1-2. Dust formation and destruction in SNe

Supernovae may be sources of the first dust

- Theoretical studies on dust formation in the SN ejecta (Todini & Ferrara'01; Nozawa+'03; Schneider+'04; Bianchi & Schneider+'07; Cherchneff & Dwek'09, '10)
 - Mdust=0.1-1 Msun in (primordial) Type II-P SNe (SNe II-P)

its presence has not been proved observationally

- a part of dust grains formed in SNe are destroyed due to sputtering in the hot gas swept up by the shocks (Bianchi & Schneider'07; Nozawa+'07, '10)
- → the destruction efficiency of dust depends on the size distribution

1-3. Mass and size of dust ejected from SN II-P

2-1. Dust formation in Type IIb SN

O SN IIb model (SN1993J-like model)

2-2. Dependence of dust radii on SN type

2-3. Destruction of dust in Type IIb SNR

 $n_{H,1} = 30, 120, 200 / cc \rightarrow dM/dt = 2.0, 8.0, 13x10^{-5} M_{sun}/yr$ for vw=10 km/s

Almost all newly formed grains are destroyed in shocked gas within the SNR for CSM gas density of $n_{\rm H} > 0.1$ /cc

→ small radius of newly formed dust

→ early arrival of reverse shock at dust-forming region

Nozawa et al. 2010, ApJ, 713, 356

2-4. IR emission from dust in Cas A SNR

Nozawa et al. 2010, ApJ, 713, 356

AKARI corrected 90 µm image

AKARI observation Md,cool = 0.03-0.06 Msun Tdust = 33-41 K (Sibthorpe+'10)

Herschel observation Md,cool = 0.075 Msun Tdust ~ 35 K (Barlow+'10)

3. Missing-dust problem in CCSNe

4-1. Dust formation in Type Ia SNe

O Type Ia SN model

W7 model (C-deflagration) (Nomoto+'84; Thielemann+'86)

10⁴

- Meje = 1.38 Msun
- $-E_{51} = 1.3$
- M(⁵⁶Ni) = 0.6 Msun

(a) Temperature

4-2. Dust formation and evolution in SNe la

5. Summary of this talk

- Type II SNe with massive H envelopes
 - radius of dust formed : aave > 0.01 µm
 → H-retaining SNe may be important sources of dust, supplying 0.1-1.0 Msun of dust to the ISM
- Type IIb/Ib/Ia SNe without massive H envelopes

 grain radius formed : aave < 0.01 µm
 dust is almost completely destroyed in the SNRs
 → H-stripped SNe are not likely to be sources of dust
 - * Our model treating dust formation and evolution self-consistently can reproduce the IR emission from Cas A SNR
- Mass of dust in young SNRs are dominated by cool dust
 FIR and submm observations of SNRs are essential
 Herschel detected massive cool dust in SN 1987A