2011/11/11

超新星放出ガス中でのダスト形成 と衝撃波によるダストの破壊

<u>野沢 貴也(Takaya Nozawa)</u> 東京大学 国際高等研究所 数物連携宇宙研究機構(IPMU)

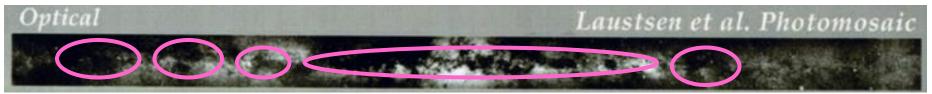
Collaborators;

T. Kozasa, A. Habe (Hokkaido University)

K. Maeda, K. Nomoto (IPMU), H. Umeda (U.T.)

<u>N. Tominaga</u> (Konan Univ.), <u>M. Tanaka</u> (IPMU)

1. Introduction


- Properties of interstellar dust in the Galaxy
- Observations of dust at high redshift
- 2. Formation and evolution of dust in Pop III Type II-P and pair-instability SNe
- 3. Formation of dust in various types of SNe
- 4. Implication and Summary

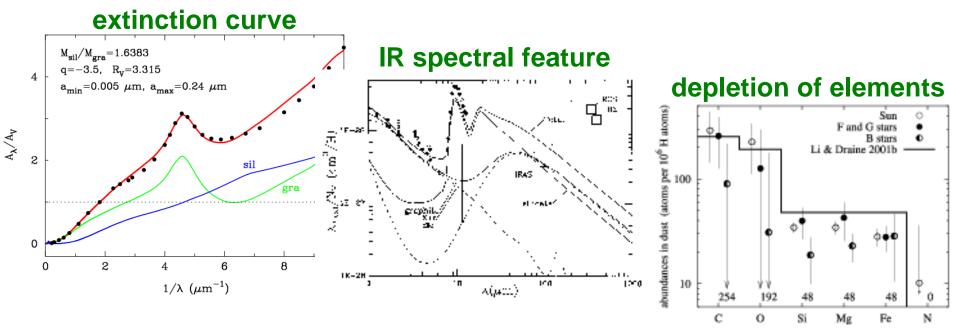
1. Introduction

1-1-1. Cosmic dust

O Cosmic dust : solid particles with radii of a few nm to ~0.1 mm in astronomical environments interplanetary dust, interstellar dust, intergalactic dust ...

Milky Way (optical)

Milky Way (infrared)

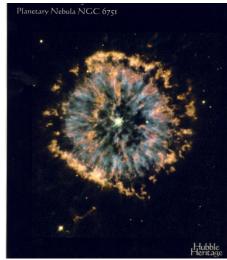

Dust grains absorb UV/optical lights and reemit it by their thermal radiation at IR wavelengths!

1-1-2. Interstellar dust in our Galaxy

O Dust in our Galaxy → when and where is dust formed?

- composition : graphite (carbonaceous) grains silicate (SiO2, MgSiO3, MgFeSiO4, ...) grains
- size : $n(a) = f(a)da = a^{-3.5} da (0.005 \sim 0.25 \mu m)$
- amount : $M_{dust} / M_{gas} \sim 1 / 140 (\sim 10^9 M_{sun})$

→ MRN dust model (e.g., Mathis+'77; Draine & Lee'84)


1-1-3. Formation site of dust

O Formation sites of dust

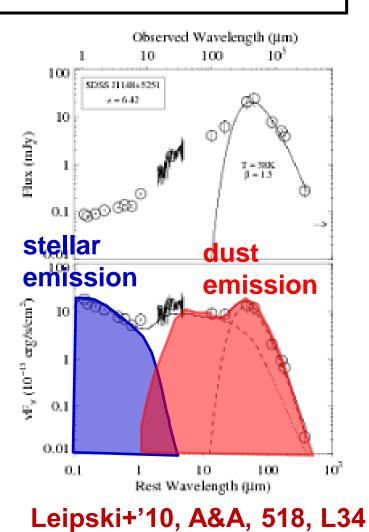
- abundant metal (metal : N > 5)
- low gas temperature (T < ~2000 K)
- high gas density (n > ~10⁶ cm⁻³)

- <u>mass-loss winds of AGB stars</u>
- expanding ejecta of supernovae
- molecular clouds (grain growth only)
- red giant, W-R stars, novae, protoplanetary disk ...

→ relative contribution of these sources is unclear!

1-2-1. Discovery of massive dust at z > 5

 The submm observations have confirmed the presence of dust in excess of 10⁸ Msun in 30% of z > 5 quasars


SDSS J1148+5251 at z=6.4

- age : 890 Myr
- IR luminosity : ~(1-3)x10¹³ Lsun
- dust mass : (2-7)x10⁸ Msun
- SFR : ~3000 Msun/yr (Salpeter IMF)
- gas mass : ~3x10¹⁰ Msun (Walter+'04)
- metallicity : ~solar

*Herschel (3.5m) • PACS :

- 70, 100, 160 μm
- SPIRE
 250, 350, 500 μm

1-2-2. What are dust sources in high-z quasar?

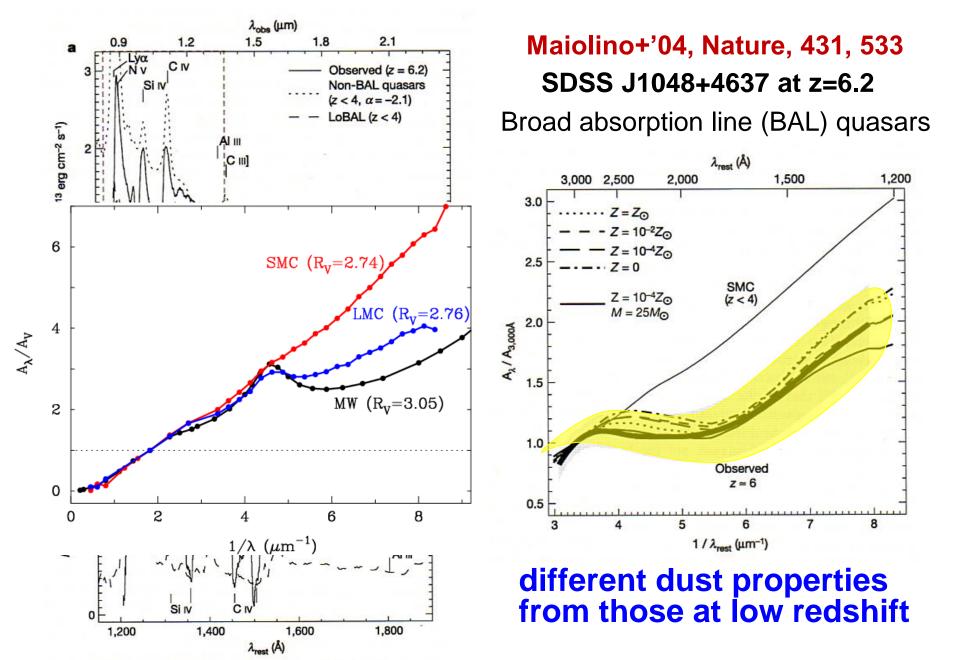
Supernovae (Type II SNe)

→ ~0.1 Msun per SN is sufficient (Morgan & Edmunds'03; Maiolino+'06; Li+'08)

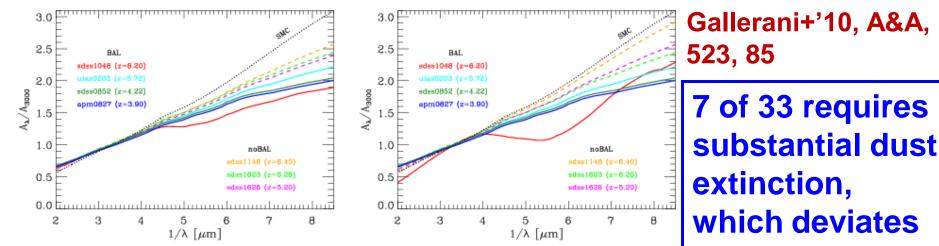
→ > 1 Msun per SN (Dwek+'07)

• AGB stars + SNe

(Valiante+'09; Gall+'11; Dwek & Cherchneff'11)

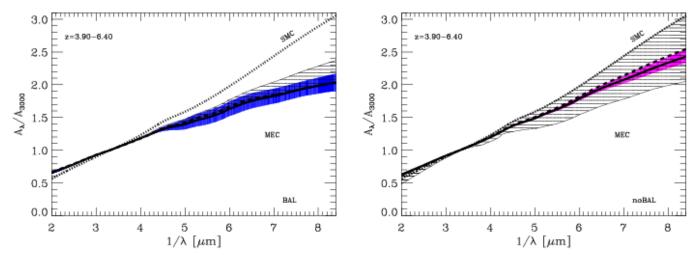

- → 0.01-0.05 Msun per AGB (Zhukovska & Gail '08)
- → 0.01-1 Msun per SN
- Grain growth in dense clouds + AGB stars + SNe

(Draine'09; Michalowski+'10; Pipino+'11; Mattsson'11)


→ Tgrowth ~ 10^7 (Z / Zsun) yr

Quasar outflows (Elvis+'02)

1-3-1. Extinction curves at high-z quasars



1-3-2. Extinction curves at 3.9 < z < 6.4

Fig. 4. Best fit extinction curves of reddened quasars. The solid lines are for BAL quasars, while dashed lines are for non-BAL quasars. For comparison the SMC extinction curve is also shown and labeled in the Figure (dotted black line). The panel on the left shows the results assuming a minimum intrinsic slope $\alpha_{\lambda,min} = -2.9$, while the panel on the right is obtained with $\alpha_{\lambda,min} = -2.6$.

The mean Extinction curves for BAL quasars deviates from the SMC with level > 95 %

from the SMC

Fig. 6. Mean (MEC) and simultaneous/global (GEC) extinction curve of reddened quasars divided into BAL (left) and non-BAL (right). The coding is the same as in Fig. 5.

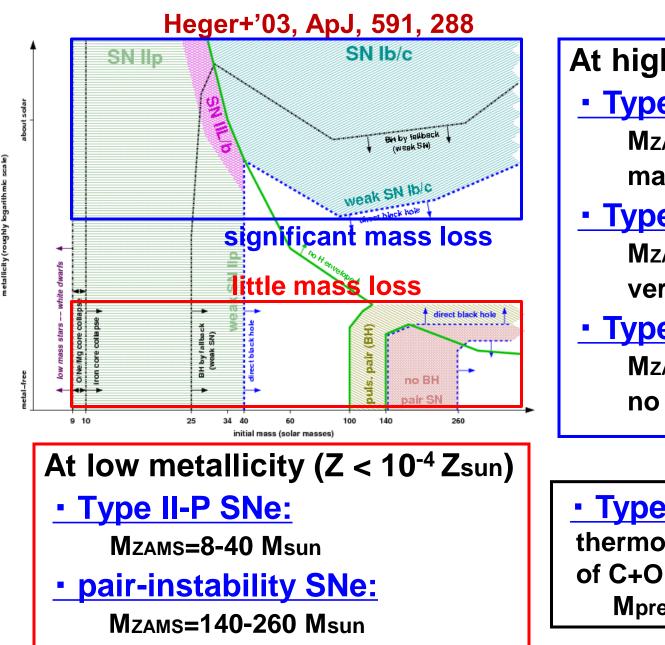
<u>1-4. Summary of Introduction</u>

 There is clear evidence for huge amounts of dust at z > 4, but the dust sources remain unexplained
 SNe2 AGB stars? grain growth in the dense clouds?

→ SNe? AGB stars? grain growth in the dense clouds? quasar outflow? any other sources?

- Properties (composition & size) of dust at high z are likely to be different from those at low z
 - → high-z quasars and GRBs are good targets to probe the extinction curves in their host galaxies

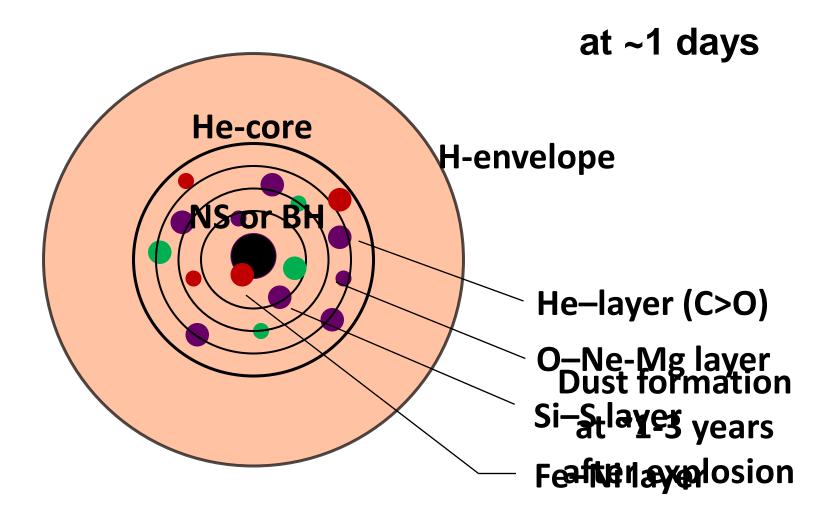
At z > 4, short-lived SNe II (M = 8-40 Msun) dominate the dust production over AGB stars (M < 8 Msun) ??


1-5. Aim of our study

- Dust absorbs stellar light and emits it by thermal radiation
 - → plays a crucial role in interpreting the evolution history of the universe from high-z observations
- Dust has great impacts on formation processes of stars
 - forming molecules (mainly H₂) on the surface (e.g., Cozaux & Spaans'04)
 - providing additional cooling pathways of gas through thermal emission (e.g., Omukai+'05; Schneider+'06)
 - controlling the energy balance in interstellar space

We aim at revealing the evolution of composition, size, and amount of dust, considering formation and destruction processes of dust consistently!!

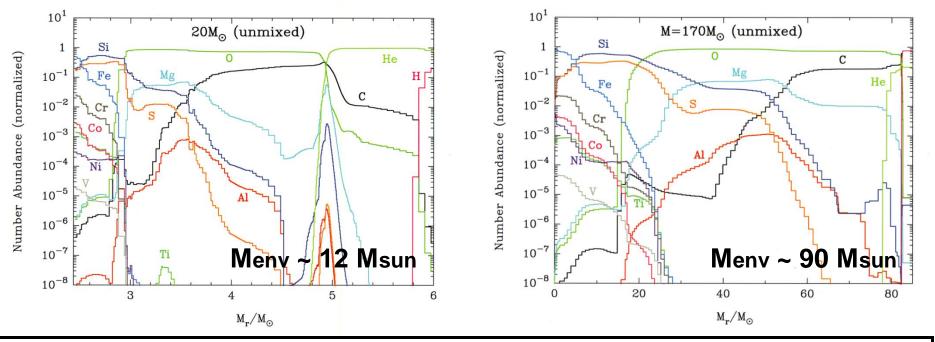
2. Formation and evolution of dust in Pop III SNe II-P and PISNe


2-0. Death of single massive stars

At high metallicity • Type II-P SNe: MZAMS=8-25 Msun? massive H envelope • Type IIb SNe: $Mz_{AMS} = 25-35 Msun?$ very thin H-envelope • Type lb/lc SNe : MZAMS > 35 Msun? no H / He envelope

 Type la SNe : thermonuclear explosion of C+O white dwarfs Mpre-explosion ~ 1.4 Msun

2-1. Dust Formation in Pop III SNe



2-1-1. Dust formation in primordial SNe

Nozawa+'03, ApJ, 598, 785

O Population III SNe model (Umeda & Nomoto'02)

- SNe II-P : MZAMS = 13, 20, 25, 30 Msun (E_{51} =1)
- **PISNe** : Mzams = 170 Msun (E_{51} =20), 200 Msun (E_{51} =28)

- nucleation and grain growth theory (Kozasa & Hasegawa'88)
- no mixing of elements within the He-core
- complete formation of CO and SiO

2-1-1.5. Calculations of dust formation

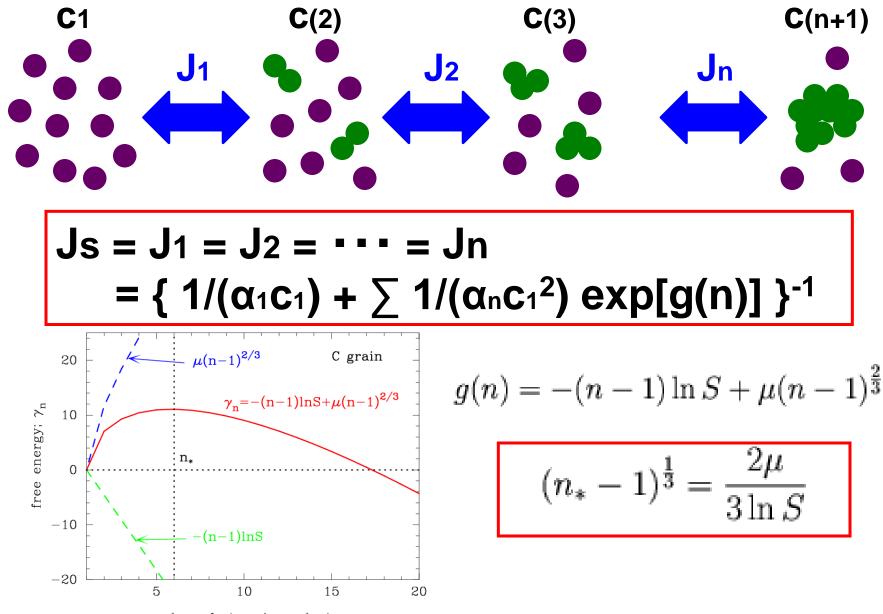
- nucleation and grain growth theory taking account of chemical reaction at condensation (Kozasa & Hasegawa'87)
 - key species: gas species with the least collision frequency among reactants

key species controls the kinetics of the nucleation and grain growth

Dust species	Chemical reactions
$\mathrm{Fe}_{(\mathrm{s})}$	$Fe_{(g)} \rightarrow Fe_{(s)}$
$FeS_{(s)}$	$\operatorname{Fe}_{(g)} + \operatorname{S}_{(g)} \to \operatorname{FeS}_{(s)}$
$Si_{(s)}$	$\mathrm{Si}_{(\mathrm{g})} \to \mathrm{Si}_{(\mathrm{s})}$
$Ti_{(s)}$	$\mathrm{Ti}_{(\mathrm{g})} \to \mathrm{Ti}_{(\mathrm{s})}$
$V_{(s)}$	$V_{(g)} \rightarrow V_{(s)}$
$Cr_{(s)}$	$\operatorname{Cr}_{(g)} \to \operatorname{Cr}_{(s)}$
$Co_{(s)}$	$\operatorname{Co}_{(g)} \to \operatorname{Co}_{(s)}$
$Ni_{(s)}$	$Ni_{(g)} \rightarrow Ni_{(s)}$
$Cu_{(s)}$	$\mathrm{Cu}_{(\mathrm{g})} \to \mathrm{Cu}_{(\mathrm{s})}$
$C_{(s)}$	$C_{(g)} \rightarrow C_{(s)}$
$SiC_{(s)}$	$\mathrm{Si}_{(g)} + \mathrm{C}_{(g)} \to \mathrm{SiC}_{(s)}$
$\operatorname{TiC}_{(s)}$	$\operatorname{Ti}_{(g)} + \operatorname{C}_{(g)} \to \operatorname{TiC}_{(s)}$
$Al_2O_{3(s)}$	$2Al_{(g)} + 3O_{(g)} \rightarrow Al_2O_{3(s)}$
$MgSiO_{3(s)}$	$Mg_{(g)} + SiO_{(g)} + 2O_{(g)} \rightarrow MgSiO_{3(s)}$
$Mg_2SiO_{4(s)}$	$2Mg_{(g)} + SiO_{(g)} + 3O_{(g)} \rightarrow Mg_2SiO_{4(s)}$
SiO _{2(s)}	$SiO_{(g)} + O_{(g)} \rightarrow SiO_{2(s)}$
$MgO_{(s)}$	$Mg_{(g)} + O_{(g)} \rightarrow MgO_{(s)}$
$Fe_3O_{4(s)}$	$3Fe_{(g)} + 4O_{(g)} \rightarrow Fe_3O_{4(s)}$
$FeO_{(s)}$	$Fe_{(g)} + O_{(g)} \rightarrow FeO_{(s)}$

2-1-2. Nucleation rate of dust

Steady-state classical nucleation rate


 α_s : sticking probability of key species ($\alpha_s = 1$, in the calculations)

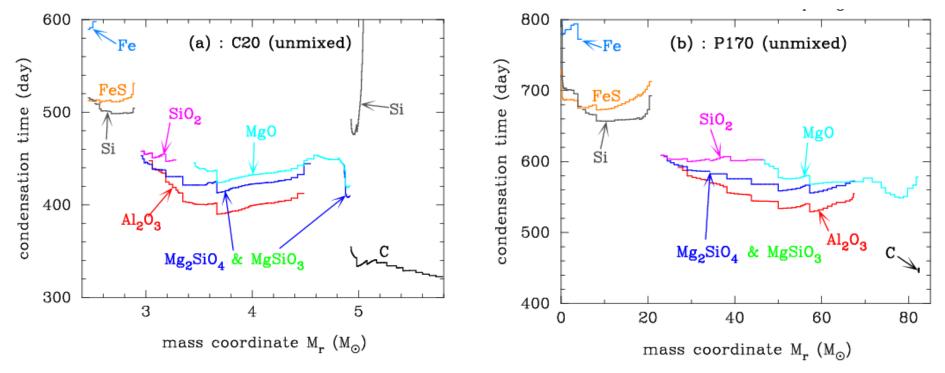
- Ω : volume of the condensate per key species $(\Omega=4\pi a_0^3/3)$
- σ : surface energy of the condensate
- m_1 : mass of key species

$$c_1(t)$$
: number density of key species

 μ : $\mu \equiv 4\pi a_0^2 \sigma/kT$; energy barrier for nucleation

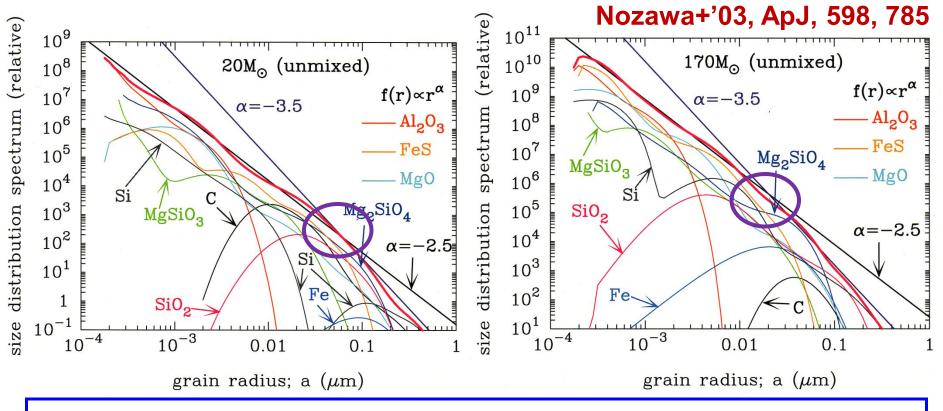
2-1-2.5. Steady-state nucleation rate

number of atom in a cluster; n


2-1-3. Basic equations of dust formation

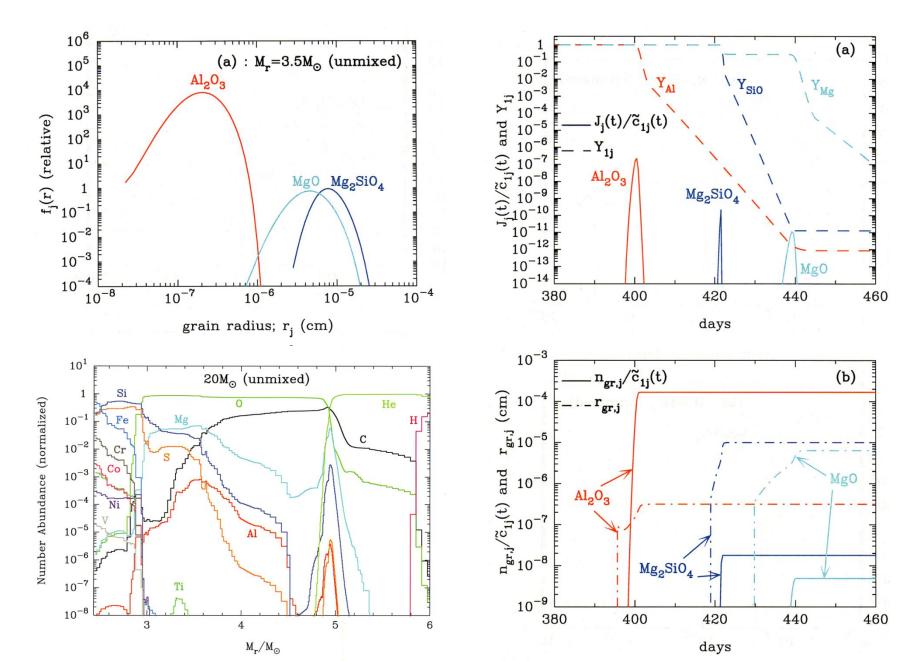
Equation of conservation for key species

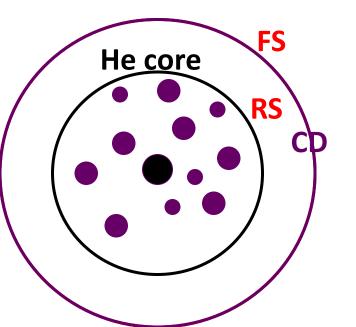
$$\begin{split} 1 - \frac{c_1(t)}{\tilde{c_1}(t)} &= \int_{t_0}^t \frac{J(t')}{\tilde{c_1}(t')} \frac{4\pi}{3\Omega} r^3(t,t') dt' \\ V(t)\tilde{c_1}(t) - V(t)c_1(t) &= \int_{t_0}^t V(t')J(t')n[r(t,t')] dt' \\ \hline \overline{\partial t} &= \alpha_s \overline{3} \left(\frac{2\pi m_1}{2\pi m_1} \right)^{-c_1(t)} = \overline{3}^{a_0\tau_{\text{coll}}} \\ \hline \frac{\partial V_{\text{d}}}{\partial t} &= 4\pi r^2 \frac{\partial r}{\partial t} = \alpha_s \Omega 4\pi r^2 \langle v \rangle c_1(t) \\ \hline \tau_{\text{coll}}^{-1}(t) &= 4\pi a_0^2 \alpha_s \left(\frac{kT}{2\pi m_1} \right)^{\frac{1}{2}} c_1(t) \\ \cdot ra \int_{t_0}^{t_0} r_{(t,t_0)} = r_* + \int_{t_0}^t \frac{1}{3} a_0 \tau_{\text{coll}}^{-1}(t') dt' \end{split}$$


2-1-4. Dust formed in primordial SNe

Nozawa+'03, ApJ, 598, 785

- Various dust species (C, MgSiO₃, Mg₂SiO₄, SiO₂, Al₂O₃, MgO, Si, FeS, Fe) form in the unmixed ejecta, according to the elemental composition of gas in each layer
- The condensation time: 300-600 days for SNe II-P 400-800 days for PISNe


2-1-5. Size distribution of newly formed dust


- grain radii range from a few A up to 1 µm
- average dust radius is smaller for PISNe than SNe II-P

amount of newly formed dust grains SNe II-P: Mdust = 0.1-1 Msun, Mdust / Mmetal = 0.2-0.3 PISNe : Mdust = 20-40 Msun, Mdust / Mmetal = 0.3-0.4

2-1-6. Behavior of dust formation

2-2. Dust Evolution in SNRs

2-2-1. Time evolution of shock wave

• Basic equations (spherical symmetry) $\frac{\partial \rho}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \rho v) = 0$ $\frac{\partial}{\partial t}(\rho v) + \frac{1}{r^2}\frac{\partial}{\partial r}(r^2\rho v^2) = -\frac{\partial P}{\partial r}$ $\frac{\partial}{\partial t} \left(\frac{\rho v^2}{2} + \frac{P}{\gamma - 1} \right) + \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \left[\frac{\rho v^2}{2} + \frac{\gamma P}{\gamma - 1} \right] v \right)$ $= -(n_{\rm e}n_{\rm H}\Lambda_{\rm gas}(T) + \Lambda_{\rm ic}(T) + \Lambda_{\rm d}(n_{\rm H},T))$ $\Lambda_{gas}(T)$: cooling function of gas by the atomic process (Sutherland & Dopita 1993; Smith et al. 2001) $\Lambda_{\rm ic}(T)$: inverse Compton cooling (Ikeuchi & Ostriker 1986) $\Lambda_{\rm ic}(T) = 5.41 \times 10^{-32} (1+z)^4 n_e(T/10^4 \,{\rm K}) \text{ (we adopt } z = 20)$

 $\Lambda_{\rm d}(n_{\rm H},T)$: cooling of gas through thermal emission of dust • numerical code : flux splitting method (van Albada et al. 1982)

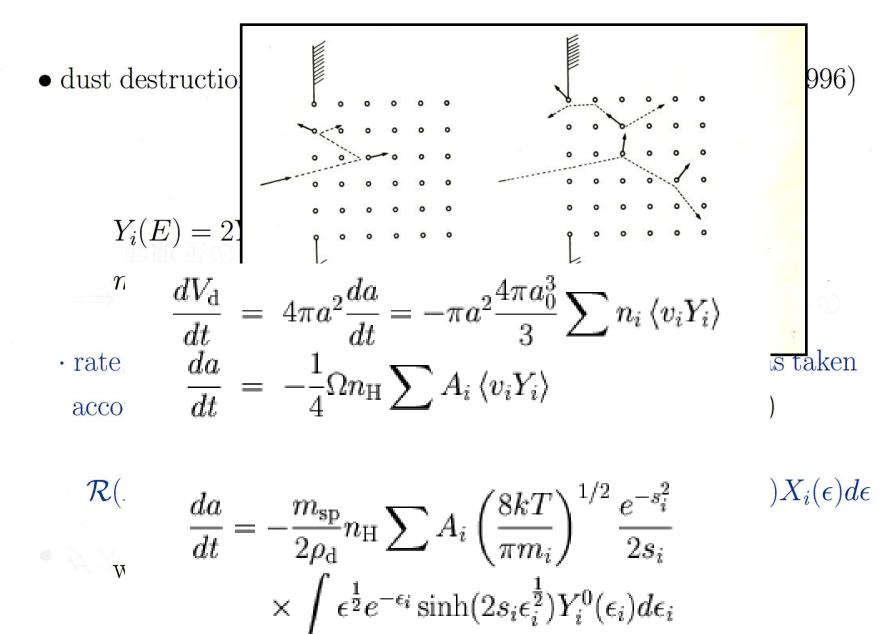
2-2-2. Initial condition for shock waves

• Hydrodynamical model of SNe (Umeda & Nomoto'02)

- SNe II : M_{pr}=13, 20, 25, 30 Msun (E₅₁=1)
- PISNe : M_{pr}=170 (E₅₁=20), 200 Msun (E₅₁=28)
- The ambient medium (homogeneous)
 - gas temperature : T = 10⁴ K
 - gas density : n_{H,0} = 0.1, 1, and 10 cm⁻³

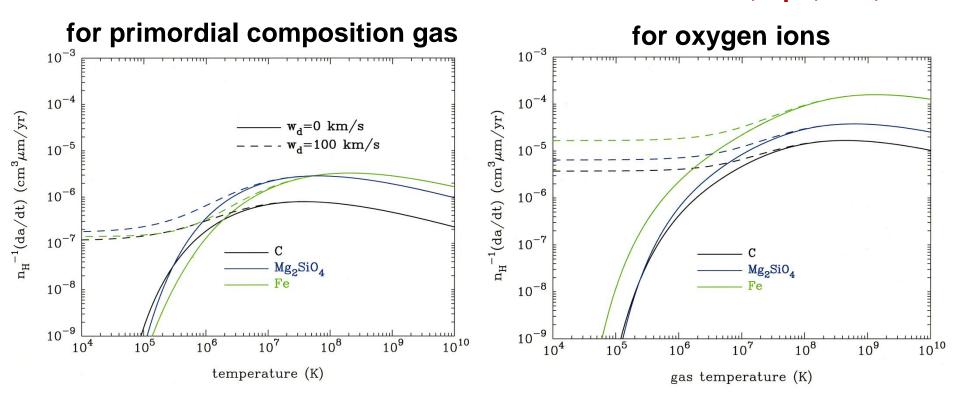
Dust Model

initial size distribution and spatial distribution of dust
 results of dust formation calculations
 treating as a test particle


The calculation is performed from 10 yr up to ~10⁶ yr

2-2-3. Dynamics of dust

• deceleration of dust due to drag force (Baines et al. 1965)


 $\frac{dw_{\rm d}}{dt} = \frac{F_{\rm drag}}{m_{\rm d}} = -\frac{3n_{\rm H}kT}{2a\rho_{\rm d}}\sum_{i}A_{i}G_{i}(s_{i}) \quad (w_{\rm d}: \text{relative velocity})$ $F_{\rm drag} = m_{\rm d} \frac{dw_{\rm d}}{dt} = -\pi a^2 \sum n_i \langle v_i m_i v_i \cos \theta \rangle$ $\frac{dw_{\rm d}}{dt} = -\frac{\pi a^2}{\frac{4}{3}\pi a^3 \rho_d} n_{\rm H} \sum A_i \langle v_i m_i v_i \cos \theta \rangle$ $\frac{3n_{\rm H}}{2} - \frac{\pi a^2}{2} - \frac{\pi a^2}{2} n_{\rm H} \sum A_i \langle v_i m_i v_i \cos \theta \rangle$ Dy $n_{\rm H}$ $= -\frac{3n_{\rm H}}{4a\rho_d}kT\sum A_iG_i$ $G_i(s_i) \approx \frac{8s_i}{3\sqrt{\pi}} \left(1 + \frac{9\pi}{64}s_i^2\right)^{\frac{1}{2}}$ (Draine & Salpeter 1979) where $s_i^2 = m_i w_d^2 / 2kT$

2-2-4. Erosion rate of dust by sputtering

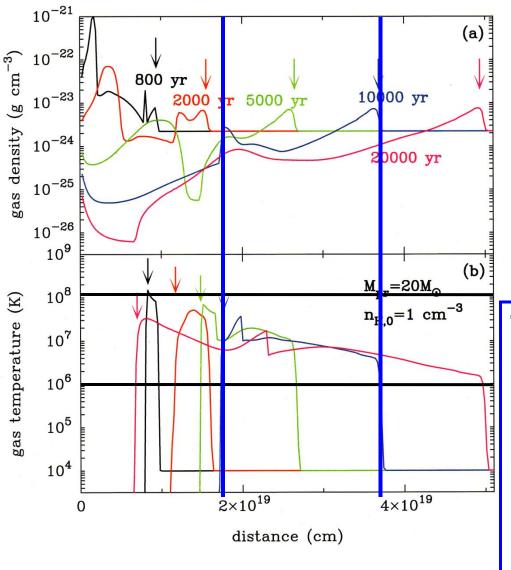
2-2-5. Erosion rate of dust by sputtering

Nozawa+'06, ApJ, 648, 435

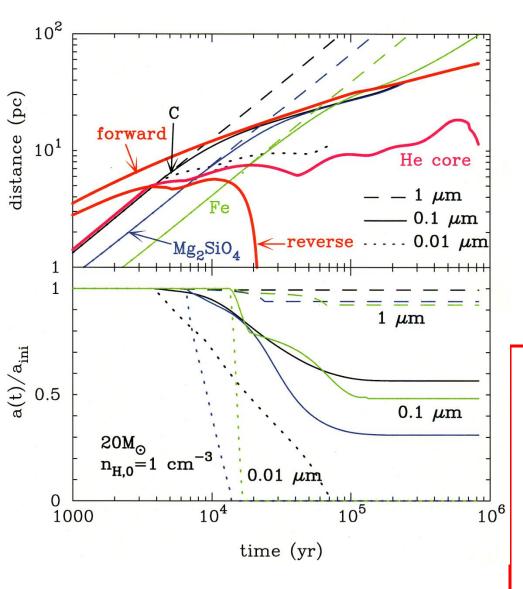
 erosion rate by sputtering quickly increases above 10⁵ K and peaks at 10⁷-10⁸ K

erosion rate : da / dt ~ 10⁻⁶ n_H µm yr⁻¹ cm³
 for the primordial gas (H and He) at T > 10⁶ K

2-2-6. Temperature and density of gas in SNRs


Nozawa+'07, ApJ, 666, 955

Model :
$$M_{pr}$$
= 20 Msun (E₅₁=1)
 $n_{H,0}$ = 1 cm⁻³


Downward-pointing arrows: forward shock in upper panel reverse shock in lower panel

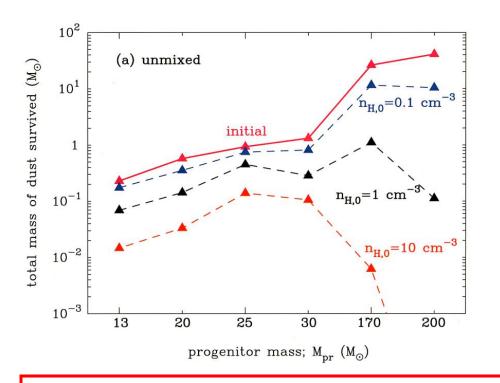
The temperature of the gas swept up by the shocks → 10⁶-10⁸ K ↓ Dust grains residing in the shocked hot gas are eroded

by sputtering

2-2-7. Evolution of dust in SNRs

Nozawa+'07, ApJ, 666, 955

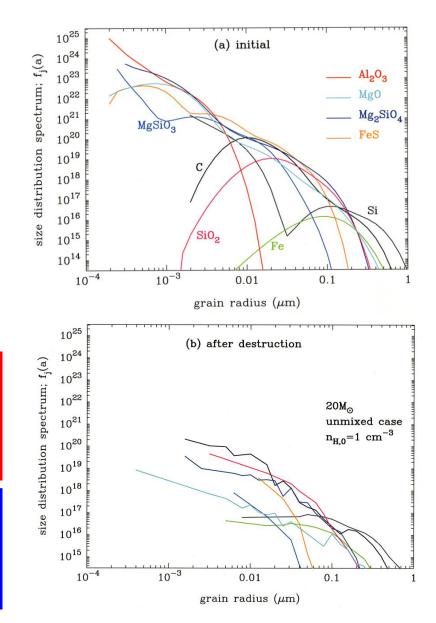
Model : M_{pr} = 20 Msun (E₅₁=1) $n_{H,0}$ = 1 cm⁻³


Dust grains in the He core collide with reverse shock at $(3-13)x10^3$ yr

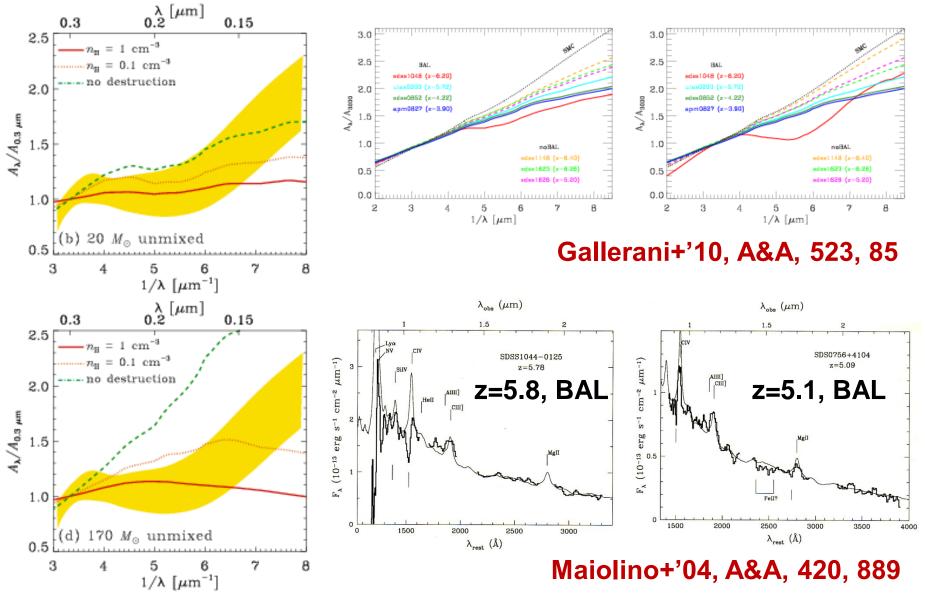
The evolution of dust heavily depends on the initial radius and composition

a_{ini} = 0.01 μm (dotted lines)

- → completely destroyed
- a_{ini} = 0.1 μm (solid lines)
 - → trapped in the shell
- a_{ini} = 1 μm (dashed lines)
 - → injected into the ISM


2-2-8. Total mass and size of surviving dust

total dust mass surviving the destruction in Type II-P SNRs; 0.08-0.8 Msun (пн,0 = 0.1-1 cm⁻³)


size distribution of surviving dust is <u>domimated by large</u> grains (> 0.01 µm)

Nozawa+'07, ApJ, 666, 955

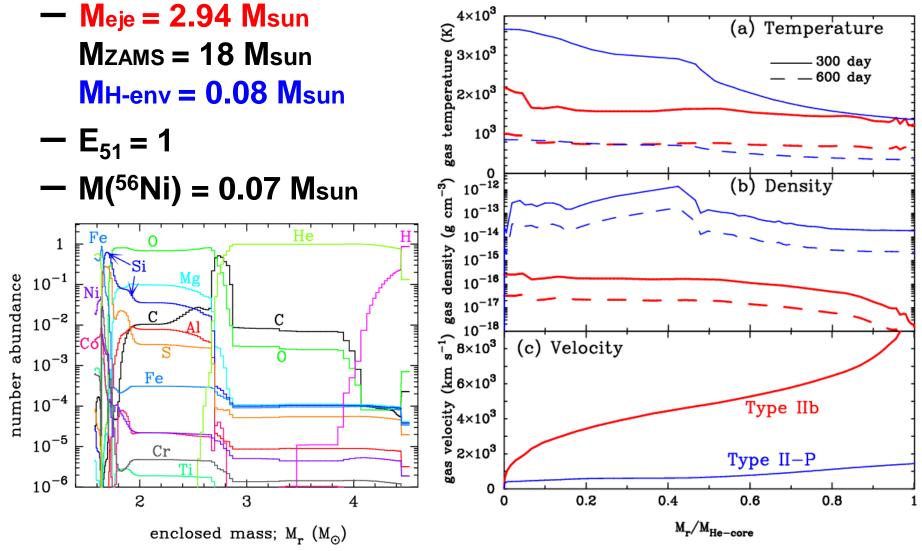
2-2-9. Flattened extinction curves at high-z

Hirashita, TN,+'08, MNRAS, 384, 1725

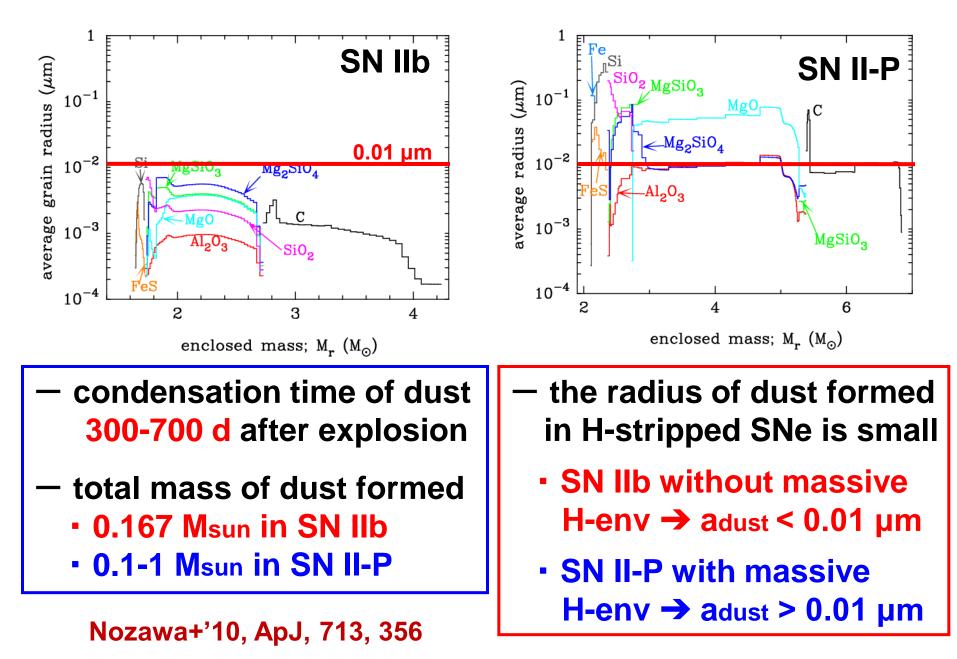
2-3. Summary of dust production in Pop III SNe

- The fate of newly formed dust within primordial SNRs strongly depends on the initial radii and compositions.
- The size distribution of dust surviving the destruction in SNRs is weighted to relatively large size (> 0.01 µm).
- The total mass of surviving dust grains decreases with increasing the ambient gas density

for n_{H,0} = 0.1-1 cm⁻³ SNe II-P → Mdust = 0.1-0.8 Msun PISNe → Mdust = 0.1-15 Msun


 Extinction curves in the early universe are expected to be flat if SNe II-P are main sources of dust at high z.

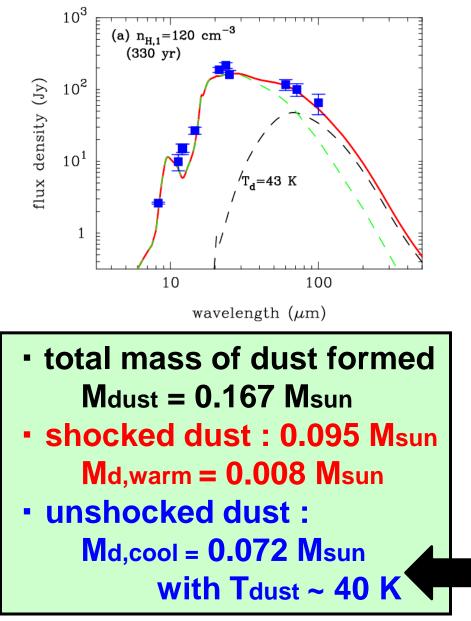
3. Formation of dust grains in various types of SNe


3-1-1. Dust formation in Type IIb SN

3-1-2. Dependence of dust radii on SN type

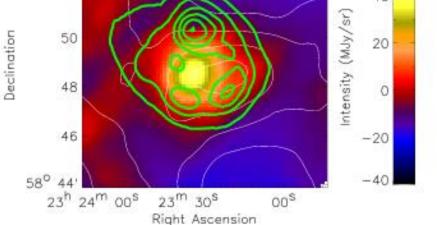
3-1-3. Destruction of dust in Type IIb SNR

 $n_{H,1}$ = 30, 120, 200 /cc → dM/dt = 2.0, 8.0, 13x10⁻⁵ Msun/yr for vw=10 km/s


Almost all newly formed grains are destroyed in shocked gas within the SNR for CSM gas density of $n_{\rm H} > 0.1$ /cc

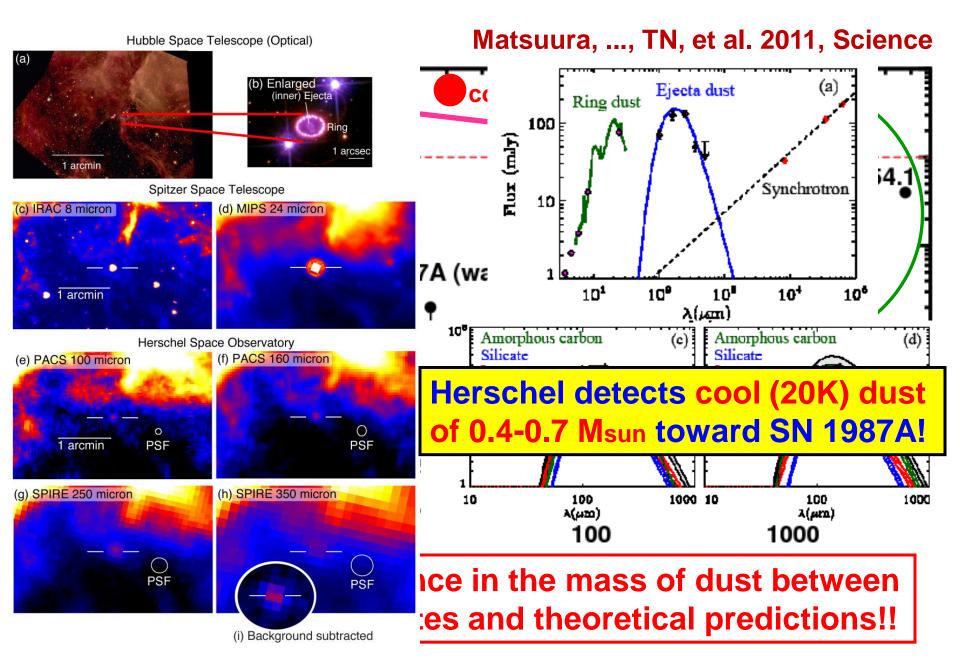
→ small radius of newly formed dust

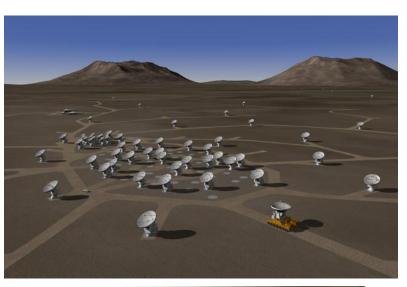
→ early arrival of reverse shock at dust-forming region

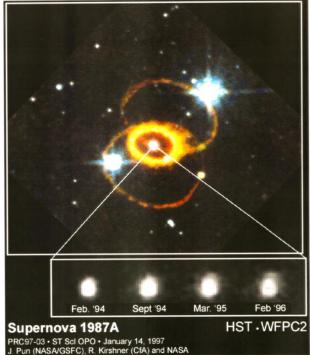

Nozawa+'10, ApJ, 713, 356

3-1-4. IR emission from dust in Cas A SNR

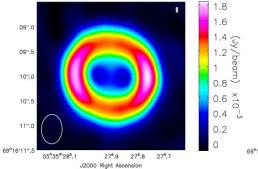
Nozawa et al. 2010, ApJ, 713, 356

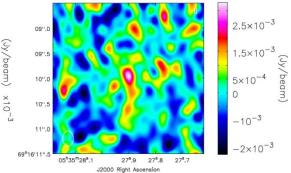

AKARI corrected 90 µm image


AKARI observation Md,cool = 0.03-0.06 Msun Tdust = 33-41 K (Sibthorpe+'10)


Herschel observation Md,cool = 0.075 Msun Tdust ~ 35 K (Barlow+'10)

3-2-1. Missing-dust problem in CCSNe


3-2-2. Resolving cold dust in SN87A with ALMA



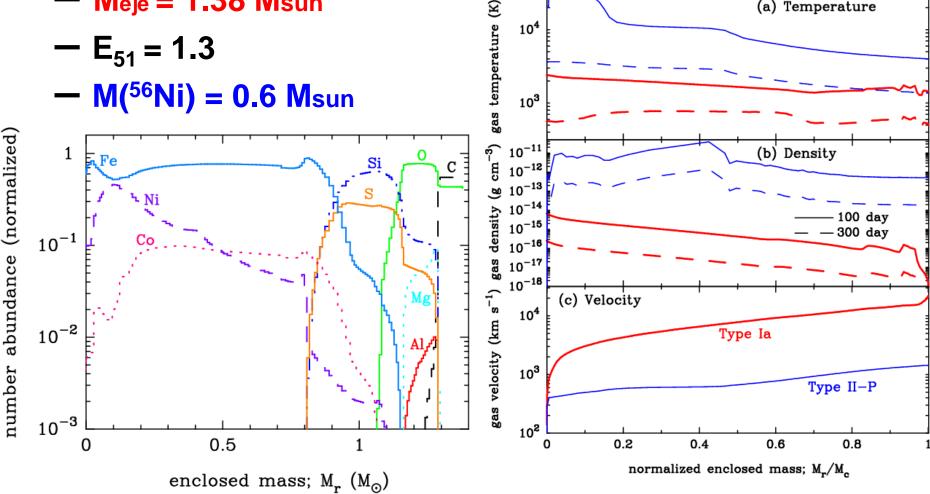
ALMA Cycle 0 Proposal 'Detecting cool dust in SN1987A' (PI: Nozawa)

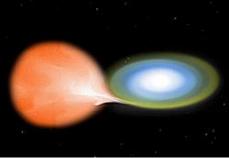
Band 7 (850 μm)

Band 9 (450 µm)

0.1 Msun of silicate \rightarrow 5 σ detection

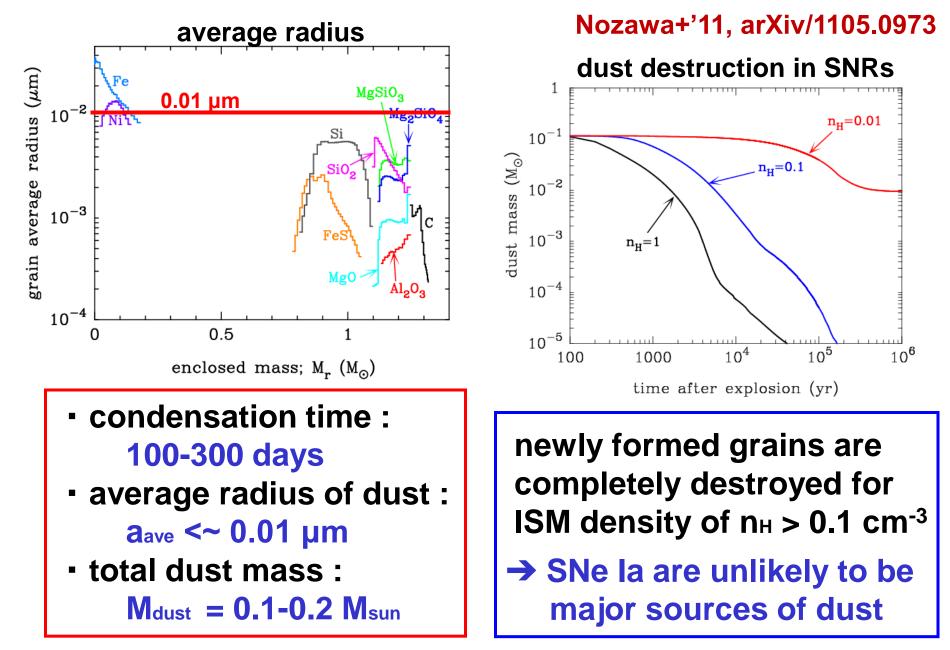
This proposal is ranked in the highest priority to be observed !

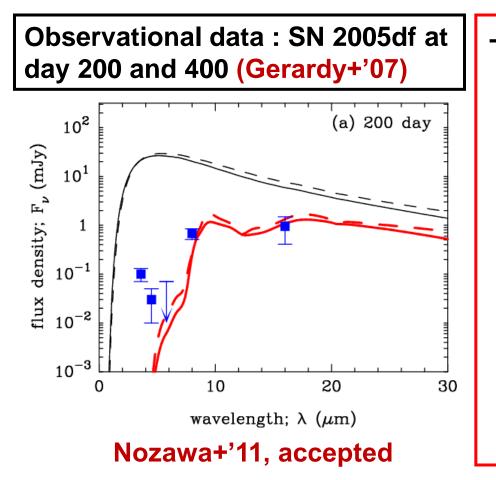

3-3-1. Dust formation in Type Ia SN


O Type Ia SN model

W7 model (C-deflagration) (Nomoto+'84; Thielemann+'86)

10⁴

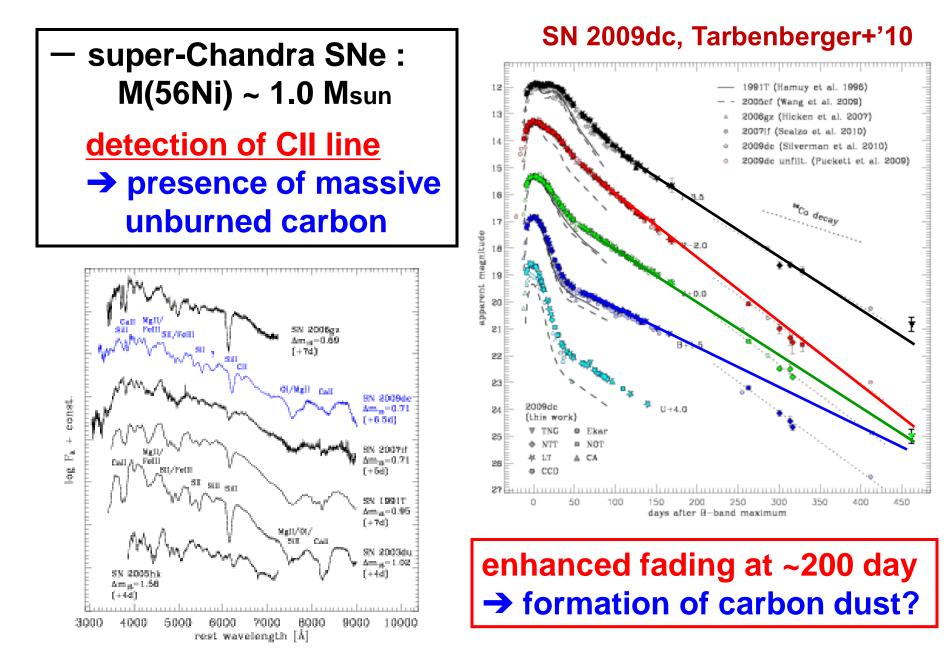

- Meje = 1.38 Msun
- $-E_{51} = 1.3$
- M(⁵⁶Ni) = 0.6 Msun


(a) Temperature

3-3-2. Dust formation and evolution in SNe la

3-3-3. Carbon dust and outermost layer

There has been no evidence for dust formation in SNe Ia
 Formation of massive carbon dust does not match the observations

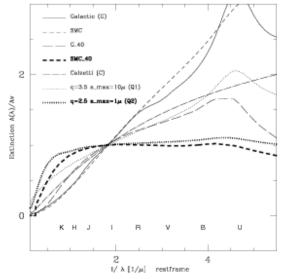


 massive unburned carbon (~0.05 Msun) in deflagration

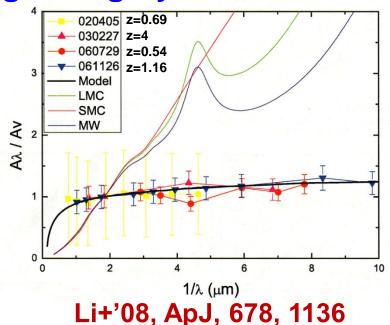
- → change of composition of WD by He-shell flash
- → burning of carbon by a delayed detonation

observationally estimated carbon mass in SNe Ia : Mc < 0.01 Msun (Marion+'06; Tanaka+'08)

3-3-4. Dust formation in super-Chandra SNe?



4. Implication and Summary


4-1. Implication on evolution history of dust (1)

O metal-poor (high-z or starbust) galaxies

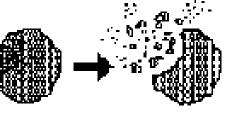
- massive stars (SNe) are dominate
- mass loss of massive stars would be less efficient
- → Type II-P SNe might be major sources of dust
 - average radius of dust is relatively large (> 0.01 μm)
 - grain growth makes grain size larger
- → dust extinction curve might be gray

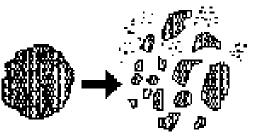
Stratta+'05, A&A, 441, 83

4-2. Implication on evolution history of dust (2)

O metal-rich (low-z or Milky Way) galavies

- low-mass stars are dominate
- mass loss of massive stars would be
- → SNe (IIb, Ib/c, Ia) might be minor sour
 - dust from AGB stars may also be larg
- → How are small dust grains produced?


grain shattering


- warm ionized medium (WIM) relative velocity of dust in turbulence : 1-20 km/s
- grain shattering is efficient
 in WIM at t=5 Myr if metallicity
 is solar and more
- the production of small grains by shattering steepens the extinction curve

Dust size distribution at t=5 Myr (nн=1 /cc)

Hirashita, TN, +'10, MNRAS, 404, 1437

4-3. Summary of this talk

- SNe are important sources of dust?
 - maybe, Yes in the early universe
 (at least, to serve the seeds for grain growth in the ISM)
- Size of newly formed dust depends on types of Sne
 - H-retaining SNe (Type II-P) : aave > 0.01 μm
 - H-stripped SNe (Type IIb/Ib/Ic and Ia) : aave < 0.01 μm
 → dust is almost completely destroyed in the SNRs
 → H-stripped SNe may be poor producers of dust
- Our model treating dust formation and evolution selfconsistently can reproduce IR emission from Cas A
- Mass of dust in SNe must be dominated by cool dust
 FIR and submm observations of SNe are essential