Are Type la supernovae important sources of interstellar dust? (Ia型超新星は星間ダストの重要な供給源か?)

Takaya Nozawa

(IPMU, University of Tokyo)

Collaborators:

K. Maeda (IPMU) T. Kozasa (Hokkaido Univ.) M. Tanaka (NAOJ) K. Nomoto (IPMU) H. Umeda (Univ. of Tokyo)

1-1. Introduction

O Type la supernovae (SNe la)

- thermonuclear explosions of C+O white dwarfs with the mass close to Chandrasekhar limit (~1.4 Msun)
 - deflagration (Nomoto+76, 84)
 → subsonic wave, unburned C in the outer layer
 - (delayed) detonation (Khokhlov 91a, 91b)
 → supersonic wave, burning almost all C
- synthesize a significant amount of Fe-peak and intermediate-mass elements such as Si, Mg, and Ca
 - → play a critical role in the chemical evolution
 - → possible sources of interstellar dust?

1-2. Type la SNe are sources of dust?

O Suggestions on dust formation in SNe la

- SNe Ia may be producers of <u>Fe grains</u> (Tielens 98; Dwek 98)
- the isotopic signature of presolar type X <u>SiC grains</u> can be explained if produced in SNe Ia (Clayton+97)

O IR Observations of SNe Ia and Type Ia SNRs

- no evidence for dust formation in normal SNe la
- no evidence for ejecta-dust in young Type Ia SNRs

Tycho SNR (Douvion+01, but see Ishihara+10) Kepler SNR (Douvion+01, Blair+07) young Type Ia SNRs in LMC (Borkowski+06, Seok+08)

→ shock-heated interstellar dust of < 10⁻² Msun

1-3. Aim of our study

O Questions

- Are there any differences in formation process of dust between SNe Ia and (Type II) CCSNe?
- Is it possible for dust grains to form in SNe Ia ?

O Dust formation calculation in SNe la

- → chemical composition, size, and mass of dust that can condense in the ejecta of SNe Ia
- → dependence of dust formation process on SN types
- → implication on the outermost layer in SNe la
- → survival of newly formed dust against destruction by the reverse shock

2-1. Model of SNe Ia (1)

O Type la SN model

- C-deflagration W7 model (Nomoto+84; Thielemann+86)
- Meje = 1.38 Msun
- $E_{kin} = 1.3 \times 10^{51} \text{ erg}$
- M(⁵⁶Ni) = 0.6 Msun

M(⁵⁶Ni) ~ 0.06 Msun in typical CCSNe

elemental composition

enclosed mass; $M_r (M_{\odot})$

- stratified distribution
 (no mixing of elements)
 - ## This assumption is supported observationally (e.g. Mazzali+08; Tanaka+11)

0.1 Msun of C and O remained unburned in the outermost layer with Mc/Mo ~ 1

2-2. Model of SNe Ia (2)

2-3. Calculation of dust formation

O nucleation and grain growth theory

(Nozawa+03, 08, 10)

- steady-state nucleation rate

$$J_j^s(t) = \alpha_{sj} \Omega_j \left(\frac{2\sigma_j}{\pi m_{1j}}\right)^{1/2} \left(\frac{T}{T_d}\right)^{1/2} \Pi_j c_{1j}^2 \exp\left[-\frac{4}{27} \frac{\mu_j^3}{(\ln S_j)^2}\right],$$

grain growth rate

$$\frac{\partial r}{\partial t} = \alpha_s \frac{4\pi a_0^3}{3} \left(\frac{kT}{2\pi m_1}\right)^{\frac{1}{2}} c_1(t) = \frac{1}{3} a_0 \tau_{\text{coll}}^{-1}$$

- sticking probability : $\alpha_s = 1.0$ and 0.1
- LTE condition : Td = T

(newly formed dust has the same temperature as the gas)

The use of the same prescription enables the direct comparison with our earlier results for SNe II

3-1. Results (1): Condensation time of dust

3-2. Results (2): Average radius of dust

3-3. Results (3): Mass of each dust species

	with molecule formation		with no molecule formation	
dust species	A1	A0.1	B1	B0.1
С	$5.66 imes 10^{-3}$	$2.84 imes 10^{-4}$	$3.73 imes10^{-2}$	2.40×10^{-2}
MgO	3.17×10^{-6}	1.85×10^{-9}	9.26×10^{-8}	1.93×10^{-9}
$MgSiO_3$		1.31×10^{-6}	· · · · · · · · ·	1.11×10^{-5}
Mg_2SiO_4	0.03 Msun	1.50×10^{-6}	0.07 Msun	6.49×10^{-6}
SiO_2		9.94×10^{-6}		$2.21 imes 10^{-3}$
Al_2O_3	8.18×10^{-7}	7.48 T ≠ T d	$8.53 imes 10^{-6}$	7.71×10^{-10}
FeS		1.55 x 10		1.53×10^{-5}
Si	0.00 1415011	3.15×10^{-5}	UT IN SUIT	$3.21 imes 10^{-5}$
Fe	$9.52 imes 10^{-5}$	$1.09 imes10^{-8}$	9.52×10^{-5}	$1.09 imes 10^{-8}$
Ni	1.48×10^{-6}	2.22×10^{-10}	1.48×10^{-6}	2.22×10^{-10}
Total	$1.16 imes10^{-1}$	$3.44 imes 10^{-4}$	$1.94 imes 10^{-1}$	$2.63 imes 10^{-2}$

Maximum mass of dust formed in SNe Ia : 0.1-0.2 Msun ref. 0.1-1.0 Msun for SNe II

Formation of C grain follows the presence of C atoms

Nozawa+11, ApJ, 736, 45

3-4. Survival of dust in Type Ia SNRs

newly formed grains are completely destroyed for ISM density of $n_{\rm H} > 0.1 \ {\rm cm^{-3}}$

SNe la are unlikely to be major sources of dust

4-1. Multi-wavelength view of Kepler SNR

At $\lambda \ge 160 \mu m$, it is difficult to disentangle any SNR emission from the large-scale interstellar structure

- <u>Kepler</u>
 Type la or lb
- t = 407 yr
- d ~ 4.0 kpc (Blair+07)
- radius of FS: 103"(2.0 pc)
- radius of RS: 80"(1.6 pc)
- ambient gas density: no ~ 5.0 cm⁻³

4-2. Origin of dust in Kepler

4-3. Multi-wavelength view of Tycho SNR

O Tycho · Type la

- t = 439 yr
- d ~ 3.8 kpc (Krause+07)
- radius of FS: 251"(4.6 pc)
- radius of RS: 183"(3.4 pc)
- ambient gas density: no ~ 3.0 cm⁻³

Gomez, Clark, TN, +11, MNRAS, accepted

Two bright components in the NE and NW at 70 μm corresponds to peaks in 24 μm emission

4-4. Origin of dust in Tycho

5-1. Comparison with theoretical calculations

- dust mass at dust formation
 0.2 M_{sun} for α_s = 1 and no
 molecular formation
- * observed dust masses :
 3.1x10⁻³ Msun for Kepler
 8.6x10⁻³ Msun for Tycho

<u>dust mass at 400 (440) yr</u> 8.8(8.4)x10⁻² Msun for n=1 /cc 2.6(2.3)x10⁻² Msun for n=3 /cc 1.7(1.4)x10⁻² Msun for n=5 /cc → the surviving dust mass is higher than observed ones

 0.1 Msun case with molecular formation
 <u>dust mass at 400 yr</u>
 6x10⁻² Msun for n=1 /cc
 1x10⁻² Msun for n=3 /cc
 8x10⁻³ Msun for n=5 /cc

5-2. Comparison with theoretical calculations

IR emission region

- in Kepler
 95"-103" (1.8-2.0 pc)
- in Tycho
 220"-251" (4.0-4.6 pc)

The model-predicted position of newly formed dust ~90" for Kepler (no ~ 5.0 cm⁻³) ~190" for Tycho (no ~ 3.0 cm⁻³)

The positions of supernova dust do not match emission region seen with Herschel

Model predicts the unshocked Fe grains → Herschel does not detect any significant mass of cool dust in the inner ejecta 200 400 600 800 1000 time after explosion (yrs) $n = 3 \text{ cm}^{-3}$ 10¹⁹ distance (cm) 18 Fe RS 200 400 600 800 1000 time (yr)

<u>Summary</u>

- C, silicate, Si, and FeS grains can condense in the ejecta of SNe Ia at 100-300 days (>300 days in SNe II)
- Due to the low ejecta density, the average radii of dust are below 0.01 μ m, smaller than those in SNe II-P
- The total mass of dust that can form in the ejecta of SNe Ia is up to 0.1-0.2 Msun
- For the IS density of nн,0 > 0.1 cm⁻³, the newly formed grains are completely destroyed within SNRs

→ SNe la are unlikely to be main producers of dust

 Herschel observations do not find evidence for freshlyformed supernova dust in Kepler and Tycho SNRs

5. Conclusion

- Herschel observations do not find evidence for freshlyformed supernova dust in Kepler and Tycho SNRs
 Type la SNe do not produce massive iron grains
- warm dust in Kepler dust mass of 3.1x10⁻³ M_{sun}, which originates from swept-up circumstellar dust
- warm dust in Tycho dust mass of 8.6x10⁻³ Msun, which originates from swept-up interstellar dust
- The observed mass of warm dust is lower than the model predicts
 - → dust formation in SNe Ia may be inhibited, or newly formed dust may be destroyed efficiently