Lecture on Cosmic Dust

Takaya Nozawa

(IPMU, University of Tokyo)

Today's Contents:

Composition of dust
 Extinction of stellar lights by dust
 Thermal radiation from dust

2011/12/19

Introduction

O Cosmic dust: solid particle with size of a few Å to 1 mm interplanetary dust, interstellar dust, intergalactic dust

Milky Way (optical)

Milky Way (infrared)

Dust grains absorb UV/optical photons and reemit by thermal radiation at IR wavelengths!

1-1. Hints as to composition of cosmic dust

Dust particles are composed of metals (N > 5) → what are abundances of metals in space?

1-2. Expected composition of dust (1)

O Major candidates of cosmic dust

- carbonaceous grains (C-based)
 - graphite
 - amorphous carbon
 - diamond, C60 (fullerene)
- silicate grains (SiO4²⁻-based)
 - MgxFe(1-x)SiO3 (pyroxene):
 MgSiO3 (enstatite)
 FeSiO3 (ferrosilite)
 - Mg_{2x}Fe_{2(1-x)}SiO₄ (olivine):
 Mg₂SiO₄ (forsterite)
 Fe₂SiO₄ (fayalite)
 - SiO₂ (silica, quartz)
 - astronomical silicate (MgFeSiO₄)

1-3. Expected composition of dust (2)

O Minor candidates of dust composition

• Iron-bearing dust (Fe-based) ??

Fe (iron), FeO (wustite), Fe2O3 (hematite), Fe3O4 (magnetite), FeS (troilite), FeS2 (pyrite)

- <u>Other carbides and oxides</u>
 <u>SiC (silicon carbide)</u>, Al₂O₃ (corundum), MgO, TiC, …
- Ices (appeared in MCs and YSOs)
 H2O, CO, CO2, NH3, CH4, CH3OH, HCN, C2H2, ...
- large molecules

PAH (Polycyclic Aromatic Hydrocarbon): C24H12 (coronene), etc. HAC (Hydrogenated Amorphous Carbon)

2-1. Extinction by dust

O Extinction = absorption + scattering

albedo = scattering / extinction : w = Tsca / Text

extinction curve

optically thin, slab-like geometry bright point source (OB stars, QSOs, GRB afterglow)

attenuation curve

effective extinction including effects of radiative transfer (Calzetti law for galaxies, Calzetti+1994, 2000)

2-2. Optical depth by dust

O Optical depth produced by dust with a radius "a" Text(a,λ) = ∫ dr ndust(a,r) Cext(a,λ) Cext(a,λ) : cross section of dust extinction

> Text(a,λ) = $\int dr \ ndust(a,r) \ \pi a^2 \ Qext(a,\lambda)$ Qext(a,λ) = Cext(a,λ) / πa^2 : extinction coefficient Qext(a,λ) = Qabs(a,λ) + Qsca(a,λ), w = Qsca(a,λ) / Qext(a,λ)

O Total optical depth produced by dust Text,λ = ∫ da ∫ dr fdust(a,r) πa² Qext(a,λ) fdust(a) = dndust(a)/da : size distribution of dust (= number density of dust with radii between a and a+da)

 $A_{\lambda} = -2.5 \log_{10}(\exp[-T_{ext,\lambda}]) = 1.068 T_{ext,\lambda}$

2-3. Evaluation of Q factors

How are Q-factors determined? → using the Mie (scattering) theory

O Mie solution (Bohren & Huffmann 1983)

describes the scattering of electromagnetic radiation by a sphere (solving Maxwell equations)

refractive index m(λ) = n(λ) + i k(λ) n, k: optical constant

 $\frac{\text{dielectric permeability}}{\epsilon = \epsilon_1 + i \epsilon_2}$ $\epsilon_1 = n^2 - k^2$ $\epsilon_2 = 2nk$

2-4. Behaviors of Q factors

Figure 3.1. Results of Mie theory calculations for spherical grains of refractive index m = 1.5 - 0.05i. Efficiency factors Q_{ext} , Q_{sca} and Q_{abs} are plotted against the dimensionless size parameter $X = 2\pi a/\lambda$.

2-5. Q factors as a function of wavelengths

2-6. Dependence of albedo on grain radius

2-7. Classical interstellar dust model in MW

O MRN dust model (Mathis, Rumpl, & Nordsieck 1977)

- dust composition : silicate (MgFeSiO4) & graphite (C)
- size distribution : power-law distribution
 n(a) ∝ a^{-q} with q=3.5, 0.005 µm ≤ a ≤ 0.25 µm

2-8. Dependence of extinction on grain size

O Rv provides a rough estimate of grain size

- smaller Rv → steeper curve → smaller grain radius
- larger $Rv \rightarrow$ flatter curve \rightarrow larger grain radius

2-9. Extinction curves in Magellanic Clouds

3-1. Thermal emission from dust grains

 Cuminosity density emitted by dust grains
 Lλ(a) = 4 Ndust(a) Cemi(a,λ) πBλ(Tdust[a])
 = 4πa² Ndust(a) Qabs(a,λ) πBλ(Tdust[a])
 Cemi(a,λ) = πa²Qabs(a,λ) ## Kirchhoff law: Qemi(a,λ) = Qabs(a,λ)

O at IR wavelengths (Q_{abs} \propto a for a << λ)

 $L_{\lambda}(a) = 4 \text{ Ndust}(a) (4\pi\rho a^{3}/3) (3Q_{abs}[a,\lambda]/4\rho a) \pi B_{\lambda}(T_{dust}[a])$

= 4 Mdust Kabs(λ) πB_{λ} (Tdust[a])

 $\kappa_{abs}(a,\lambda) = 3Q_{abs}/4\rho a$: mass absorption coefficient

→ IR emission is derived given Mdust, Kabs, and Tdust

3-2. Dependence of Q/a on wavelengths

3-3. Example of thermal emission from dust

$L_{\lambda}(a) = 4 \text{ Mdust Kabs}(\lambda) \pi B_{\lambda}(Tdust[a])$

→ IR emission is derived given Mdust, Kabs, and Tdust

3-4. Reemission of stellar light by dust

How is dust temperature determined? → approaching from conservation of energy

O energy reemitted by dust = energy absorbed by dust

time during which dust is thermalized extremely short < 10⁻⁵ s

3-5. Luminosity of dust emission

O Luminosity emitted by a dust grain Lemi = $\int d\lambda 4\pi a^2 Q_{abs}(a,\lambda) \pi B\lambda(Tdust[a])$ = 4πa² σTdust⁴ <Qabs(Tdust)> <Qabs(Tdust)> : plank-mean absorption coefficient = $\int Q_{abs}(a,\lambda) \pi B\lambda(Tdust[a]) d\lambda / \int \pi B\lambda(Tdust[a]) d\lambda$

O Stellar luminosity absorbed by a dust grain

Labs = $\int d\lambda \pi a^2 Q_{abs}(a,\lambda) F_{\lambda}(T_{star})$ = $(R_{star}/D)^2 \pi a^2 \sigma T_{star}^4 < Q_{abs}(T_{star}) >$ = $L_{star}/4\pi D^2 \pi a^2 < Q_{abs}(T_{star}) >$ a star is assumed to be a blackbody: $F_{\lambda}(T_{star}) = L_{\lambda}/4\pi D^2 = (R_{star}/D)^2 \pi B_{\lambda}(T_{star})$

<u>3-6. Temperature of dust grains (1)</u>

O Labs = Lemi (dust is assumed to be in thermal equilibrium) (Rstar/D)² Tstar⁴ <Qabs(Tstar)> = 4Tdust⁴ <Qabs(Tdust)> Or

 $L_{star}/4\pi D^2 < Q_{abs}(T_{star}) > = 4\sigma T_{dust}^4 < Q_{abs}(T_{dust}) >$

- O analytical solutions, assuming <Qabs(Tstar)> = 1 and Qabs = Qabs,0 (λ / λ_0)^{- β}
 - → <Qabs(Tdust)> = Qabs,0 λ 0^β(15/π⁴) (kTdust/hc)^β ζ(β+4)Γ(β+4)

(β =0) Lstar/4 π D² = 4Qabs,0 σ Tdust⁴

(β =1) Lstar/4 π D² = 4Qabs,0 (k λ 0/hc) σ Tdust⁵ (373.3/ π ⁴)

(β =2) Lstar/4 π D² = 4Qabs,0 (k λ 0/hc)² σ Tdust⁶ (π ²/63)

3-7. Temperature of dust grains (2)

O Dust temperatures as functions of D (distance) and β for Lstar = Lsun = 3.85×10^{33} erg s⁻¹, Qabs,0 = 1, λ_0 = 1.0 µm

Dust temperature is higher for higher β → Higher β causes lower efficiency of radiative cooling