Galactic Extinction Curves and Interstellar Dust Models

Nozawa, T. and Fukugita, M. (Kavli IPMU, University of Tokyo)

2012/05/08

1. Introduction

Extinction curve: wavelength-dependence of interstellar extinction by dust

necessary for correcting the SEDs of stars/galaxies

- → especially, extragalactic objects whose appearances are disturbed by the Galactic interstellar extinction
- depends on the physical and optical properties of dust
 - → provides information on the composition and size distribution of interstellar dust on the line of sight
 - → holds important clues to the origin and evolution history of interstellar dust

2. Average interstellar extinction curves in MW

3. Interstellar dust models in MW

4. Variety of interstellar extinction curves

There are a large variety of interstellar extinction curves
How much can the properties of interstellar dust change?

5. Comparison to CCM formula and WD curve

black: 1σ range of the FM07 data red: CCM curve with Rv = 2.75 blue: CCM curve with Rv = 3.60 green: extinction curve for the case of Rv=3.1 by WD01 fully consistent in UV region Results from CCM formula with Rv = 2.75-3.60 are 0.02-0.06 mag higher than the 1 σ range in JHK WD01 model is based on results by Fitzpatrick (1999), which are quite similar to the CCM results

6. What causes the difference in IR extinction?

7.Demonstration of contour plots

The 1σ ranges from FM07 data are classified into three groups
UV: UV bump (0.22 μm), FUV dip (0.16 μm), FUV rise (0.125 μm)
UB: U band and B band
JHK: J band, H band, K band

A contour plot is depicted for each of the groups defined in the left panel blue: constraint from UV/FUV green: constraint from UB band red: constraint from JHK band

8-1. Contour plots for fgra/fsil = 1.0

contour plots of amax and q that fulfill the 1σ range of FM07 data for fgra/fsil = 1.0 (Mgra/Msil = 0.78) blue: constraint from UV/FUV green: constraint from UB band red: constraint from JHK band contour plots of amax and q that fulfill the 1σ range of CCM result for fgra/fsil = 1.0 (Mgra/Msil = 0.78) blue: constraint from UV/FUV green: constraint from UB band red: constraint from JHK band

8-2. Contour plots for fgra/fsil = 0.5

contour plots of amax and q that fulfill the 1σ range of FM07 data for fgra/fsil = 0.5 (Mgra/Msil = 0.39) blue: constraint from UV/FUV green: constraint from UB band red: constraint from JHK band contour plots of amax and q that fulfill the 1σ range of CCM result for fgra/fsil = 0.5 (Mgra/Msil = 0.39) blue: constraint from UV/FUV green: constraint from UB band red: constraint from JHK band

8-3. Contour plots for fgra/fsil = 0.2

contour plots of amax and q that fulfill the 1σ range of FM07 data for fgra/fsil = 0.2 (Mgra/Msil = 0.16) blue: constraint from UV/FUV green: constraint from UB band red: constraint from JHK band contour plots of amax and q that fulfill the 1σ range of CCM result for fgra/fsil = 0.2 (Mgra/Msil = 0.16) blue: constraint from UV/FUV green: constraint from UB band red: constraint from JHK band

9. Summary

- The extinction ranges in UV regions from FM07 are described by the CCM formula with Rv = 2.75-3.60
- The observed range of NIR extinction from FM07 does not match with the results from CCM relation difference : 0.02-0.06 mag
 - → The average interstellar extinction curve is not necessarily universal
- For the power-law grain-size distribution,
 - The values of q and amax that satisfy the observed
 1σ ranges of FM07 are confined to narrow ranges
- There is no combination of q and amax that satisfy the observed ranges when CCM results are adopted