Detecting Cool Dust in SNRs in LMC and SMC with ALMA

<u>Takaya Nozawa</u> (Kavli IPMU) and

Masaomi Tanaka (NAOJ)

Targets

ATHEMATICS OF THE UNIVERS

- SN 1987A: our proposal for ALMA Cycle 0 and next plan for ALMA Cycle 1
- 1E0102.2-7219: youngest SNR in SMC

1. SNRs at submm and millimeter wavelengths

- <u>molecular lines</u> and <u>synchrotron emission</u> from interaction regions between molecular clouds and SN blast waves
- <u>synchrotron emission</u> from pulsar wind nebulae

- <u>thermal emission</u> from cool dust which was formed in the expanding ejecta of SNe
 - \rightarrow cool dust dominates the dust mass
 - \rightarrow discovery of a huge amount of dust at z > 5

SNe are important sources of interstellar dust?

2. Summary of dust mass in core-collapse SNe

Far-IR to sub-mm observations are essential for revealing the mass of dust grains produced in the ejecta of SNe

3. Herschel detects cool dust in SN 1987A

4. Resolving cool dust in SN 1987A with ALMA

5. Constraining mass of cool dust in SN 1987A

Lakicevic+12, A&A, 541, L1

Lakicevic+12, A&A, 541, L2

6. Successful ALMA proposals for SN 1987A

2011.0.00221.5

PI	Ехес	Country	Institute
Nozawa, Takaya	EA	Japan	The University of Tokyo
COI			
Tanaka, Masaomi	EA	Japan	The University of Tokyo
Moriya, Takashi	EA	Japan	University of Tokyo
Minamidani. Tetsuhiro	EA	Japan	Hokkaido University
Kozasa, Takashi	EA	Japan	Hokkaido University

Band 9 extended configuration

2011.0.00273.5			
PI	Exec	Country	Institute
Indebetouw. Remy	NA	United States	Virginia, University of
COI			
McCray, Richard	NA	United States	Colorado at Boulder. Univ of
Matsuura, Mikako	EU	United Kingdom	London. University of
Andjelic, Nilica	OTHER	Serbia	Belgrade, University of
Arbutina, Bojan	OTHER	Serbia	Belgrade, University of
Baes, Maarten	EU	Belgium	Ghent University

Urosevic, Dejan

Vlahakis, Catherine CL

OTHER

Serbia

Chile

Belgrade, University of

Chile, University of

Band 3, 6, 7, 9 **compact** configuration

Wesson, Roger	ED	United Kingdom	London, University of
Dwek, ELi	NA	United States	National Aeronautics and Space Administration
Bouchet, Patrice	EU	France	CEA Saclay
Lakicevic, Masa	EU	Germany	European Southern Observatory
Potter, Toby	OTHER	Australia	International Centre for Radio Astronomy Research

7. Condition of atmosphere

8. 12m-array configurations for ALMA Cycle1

compact 🗲

	CE	C32-1		C32-2		C32-3		C32-4		C32-5		C32-6	
Band (freq)	Ang Res	Max Ang Scale											
Band 3 (100GHz)	3.7"	25"	2.0"	25"	1.4"	17"	1.1"	17"	0.75"	14"	0.57"	8.6"	
Band 6 (230GHz)	1.6"	11"	0.89"	11"	0.61"	7.6"	0.48"	7.6"	0.33"	6.2"	0.25"	3.7"	
Band 7 (345GHz)	1.1"	7.1"	0.59"	7.1"	0.40"	5.0"	0.32"	5.0"	0.22"	4.1"	0.16"	2.5"	
Band 9 (675GHz)	0.55"	3.6"	0.30"	3.6"	0.21"	2.6"	0.16"	2.6"	0.11"	2.1"	0.08"	1.3"	

<u>Cycle0 proposal</u> (extended, Band 9

Ang Res : 0.23" Max Res : 1.5"

Cycle1 proposal

- Band 6, 7, and 9
- C32-5 or C32-6 or mixed confguration?

9. Possible target: SNR 1E0102, a twin of Cas A

Stanimirovic+05

X-ray

6 cm

24 µm

Cassiopeia A

- Type IIb
- age : 330 yr
- Mwarm < 10⁻² Msun
- Mcool ~ 0.07 Msun

Cas A model (Nozawa+10)

Barlow+10, A&A, 518, L138

10. IR observations of SNR 1E0102

11. Comparison with SED of SN 1987A

IR-to-radio SEDs of SN 1987A and 1E0102 are similar But ..

12. SNR 1E0102 is too extended!

13. Array & ACA combinations

	C32-1		C32-2		C32-3		C32-4		C32-5		C32-6	
Band (freq)	Ang Res	Max Ang Scale										
Band 3 (100GHz)	3.7"	25"	2.0"	25"	1.4"	17"	1.1"	17"	0.75"	14"	0.57"	8.6"

- Use of ACA requires 3 times more times
- Atmospheric correction is not available on ACA
- Total Power (TP) is not available for continuum

	C	C32-1 &		32-2 & 7-m Arrov	C	32-3 & 7-m Arrov	C32-4 &		
	ACA	/-m Array	ACA 7-m Array		ACA	/-III Allay	ACA 7-III Array		
Band	Ang	Max Ang	Ang	Max Ang	Ang	Max Ang	Ang	Max Ang	
(freq)	Res	Scale	Res	Scale	Res	Scale	Res	Scale	
Band 3	2 7"	44"	2.0"	44"	1 4"	44"	1 1"	44"	
(100 GHz)	5.7	44	2.0	44	1.4	44	1.1	44	
Band 6	1 6"	10"	0.90"	10"	0.61"	10"	0.49"	10"	
(230 GHz)	1.0	19	0.89	19	0.01	19	0.40	19	
Band 7	1 1"	12"	0.50"	12"	0.40"	12"	0.22"	12"	
(345 GHz)	1.1	12	0.59	12	0.40	12	0.32	12	
Band 9	0.55"	65"	0.20"	65"	0.21"	65"	0.16"	65"	
(675 GHz)	0.55	0.5	0.30	0.5	0.21	0.5	0.10	0.5	

14. What is the best strategy for SNR 1E0102?

15. Flux estimates necessary for detection

Detecting cool dust in SNRs with ALMA

- <u>SN 1987A</u> (radius: 0.5 arcsec)
 - Spatially resolved images in Band 6, 7, and 9
 - Possibility of detecting molecular lines?

- 1E0102.2-7219 (radius: 20 arcsec)
 - too large and too faint (almost impossible)
 - → it seems too hard to detect continuum emission from cool dust in any other SNRs..

A-1. How dense is cool dust in 1E0102?

• <u>1E0102.2-7219</u>

R = 15 arcsec → 1.3x10¹⁹ cm = 4.4 pc @ 60 kpc

what is the mass of dust if ISM dust is included in the sphere with this radius?

Mdust ~ $(4\pi R^3 / 3) D$ (nн mн) = 0.077 Msun (D / 0.01) (nн / 1 cm⁻³)

<u>Cassiopeia A</u>

R = 100 arcsec → 4.8x10¹⁸ cm = 1.6 pc @ 3.4 kpc

A-2. Importance of molecular lines in SN 1987A

- <u>CO and SiO molecules were detected around 300 days</u> <u>after explosion in SN 1987A</u> (CO and SiO were confirmed in many dust-forming SNe)
- Measuring the expansion velocity of the ejecta
- <u>CO molecule has been detected in Cas A SNR</u>
- All condensible metals have to be tied up in dust grains to explain 0.4-0.7 M_{sun} of dust in SN 1987A
 → CO and SiO molecules can survive??
- How much CO and SiO line fluxes can contribute the continuum flux?

→ expected mass of CO and SiO: ~10⁻³ Msun

A-3. Summary of molecular lines

Band 3: 84-115 GHz Band 6: 211-274 GHz Band 7: 275-373 GHz Band 9: 607-720 GHz

CO molecule

v=0, 1-0: 115.271 GHz (B3) v=0, 2-1: 230.538 GHz (B6) v=0, 3-2: 345.796 GHz (B7) v=0, 4-3: 461.041 GHz v=0, 5-4: 576.268 GHz

v=0, 6-5: 691.473 GHz (B9)

SiO molecule

v=0, 2-1: 86.847 GHz (B3)

v=0, 3-2: 130.269 GHz

```
v=0, 4-3: 173.688 GHz
```

```
v=0, 5-4: 217.105 GHz (B6)
```

```
v=0, 6-5: 260.518 GHz (B6)
```

```
v=0, 7-6: 303.927 GHz (B7)
```

```
v=0, 8-7: 347.331 GHz (B7)
```

v=0, 15-14: 650.958 GHz (B9) v=0, 16-15: 694.296 GHz (B9)