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1. Introduction

Extinction curve: wavelength-dependence of
Interstellar extinction caused by dust grains
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= necessary for correcting the SEDs of stars/galaxies

=> especially, extragalactic objects whose appearances
are disturbed by the Galactic interstellar extinction
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- depends on the physical and optical properties of dust

=> provides information on the composition and size
distribution of interstellar dust on the line of sight

->» holds important clues to the origin and evolution
history of interstellar dust (e.g., Hirashita & Nozawa 2012)
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2. Average interstellar extinction curves in MW

It seems the Galactic average
4 | |extinction curve Is universal
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— — - FMO7
0 O CCM formula (Cardelli, Clayton & Mathis 1989)

- ANAV = a(x) + b(x)/ Rv, wherex=1/A
 Rv : ratio of total-to-selective extinction
Rv=Av/(AB —Av) cf. Rvave=3.1




3. Interstellar dust models in MW
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4. Variety of interstellar extinction curves

* There are a large variety of interstellar extinction curves

- How much can the properties of dust grains be changed?

Milky Way /4, gray curves.
328 extinction curves

T 1o range g\ "4 derived by Fitzpatrick
T 2o range = & Massa (2007, FMO?)
< N +
} == red bars:
& = - | | 1o ranges including

«F = 224 data




5-1. Comparison between FM07 and CCM89

UV-through-IR extinction curves Close-up of IR extinction curves
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black: 10 range of the FM07 data Results from CCM formula with

red: CCM curve with Rv = 2.75 Rv = 2.75-3.60 are 0.02-0.06 mag

blue: CCM curve with Rv = 3.60 higher than the 10 range in JHK

green: extinction curve for the WDO01 model is based on result
case of Rv=3.1 by WDO0O1 by Fitzpatrick (1999), which is

fully consistent in UV region similar to CCM curve w/ Rv=3.1




5-2. What is the difference in IR extinction?

NIR extinction is interpolated by power-law formula ANAv oc A*-a

MW (1 sigma)

CCM ={a = 1.61
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CCM:a=161 a=1.7 (He et al. 1995)

from Rieke & Lebofsky (1985) a =1.8 (Froebrich et al. 2007)

_ a = 2.0 (Nishiyama et al. 2006)

FMO7:a=1.84 a = 2.3 (Larson & Whittet 2005)

from Martin & Whittet (1990) a = 2.6 (Gosling et al. 2009)




6. Dust model
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(a)n;(a)da, (spherical grain)

* power-law size distribution (amin < a < amax)

njla) =npkK;a™ %,
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amin = 0.005 um

g, amax . parameters (same for different grain species)

fij =» a fraction of an element i locked up in a grain |

— graphite, glassy carbon, amorphous carbon
— astronomical silicate (MgFeSiOa4), Mg2SiO4

— Fe, Fe304

to search for the combination of g and amax (and fi,j)

that fulfill the observed extinction ranges




7. lllustration of contour plots

10 range of FMO07 data

Contour plots for graphite
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The 10 ranges from FM07 data

are classified into three groups

UV: UV bump (0.22 pm), FUV dip
(0.16 pm), FUV rise (0.125 pm)

UB: U band and B band

JHK: J band, H band, K band

A contour plot is depicted for
each of the groups defined in
the left panel

blue: constraint from UV/FUV
green: constraint from UB band
red: constraint from JHK band




8-1. Contour plots for fgra/fsil = 1.0

Case of 10 data, fgra/fsil = 1.0
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contour plots of amax and g that
fulfill the 10 range of FM07 data
for fgra/fsil = 1.0 (Mgra/Msil = 0.78)
blue: constraint from UV/FUV
green: constraint from UB band
red: constraint from JHK band

contour plots of amax and g that
fulfill the 1o range of CCM result
for fgra/fsil = 1.0 (Mgra/Msil = 0.78)
blue: constraint from UV/FUV
green: constraint from UB band
red: constraint from JHK band




8-2. Contour plots for fgra/fsil = 0.5

Case of 10 data, fgra/fsil = 0.5
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contour plots of amax and g that
fulfill the 10 range of FM07 data
for fgra/fsil = 0.5 (Mgra/Msil = 0.39)
blue: constraint from UV/FUV
green: constraint from UB band
red: constraint from JHK band

contour plots of amax and g that
fulfill the 1o range of CCM result
for fgra/fsil = 0.5 (Mgra/Msil = 0.39)
blue: constraint from UV/FUV
green: constraint from UB band
red: constraint from JHK band




8-3. Contour plots for fgra/fsil = 0.2

Case of 10 data, fgra/fsil = 0.2
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contour plots of amax and g that
fulfill the 10 range of FM07 data
for fgra/fsil = 0.2 (Mgra/Msil = 0.16)
blue: constraint from UV/FUV
green: constraint from UB band
red: constraint from JHK band

contour plots of amax and g that
fulfill the 1o range of CCM result
for fgra/fsil = 0.2 (Mgra/Msil = 0.16)
blue: constraint from UV/FUV
green: constraint from UB band
red: constraint from JHK band




8-4. Brief summary of our results

Conbination of Dust Grains FMO7T 1o CCM 1o
(1) Graphite-Astronomical Silicate Yes No
(2) Glassy Carbon—Astronomical Silicate No No
(3) Amorphous Carbon—Astronomical Silicate No No
(4) Graphite—Glassy Carbon—Astronomical Silicate Yes No
(5) Graphite-Amorphos Carbon—Astronomical Silicate Yes No
(6) Graphite—Fe Yes No
(7) Graphite-Fe;0, No No
(8) Graphite—Astronomical Silicate-Fe Yes No
(9) Graphite-Astronomical Silicate-Fe;z0, Yes Yes
(10) Graphite-Mg,SiO, Yes No
(11) Graphite-Mg;S5i0,—Fe Yes No
(12) Graphite-MgySiO,—Fe30, Yes Yes

Almost all of the dust models considered here do not
have combinations of g and amax that meet extinction
ranges when the CCM NIR extinction is considered




9-1. Piled-up contour for graphite-astro.sil

Piled-up contour
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Values of g and amax that meet
the 10 range of FM07 data are
confined to be narrow ranges

3.2<Qq<3.7
0.19um <amax <0.34 um
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9-2. Piled-up contour for carbon-astro.sil

30 % of C included in glas.car
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30 % of C included in amor.car
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70 % of C =>» graphite
30 % of C = glassy carbon

The thin lines are for graphite-
astronomical silicate

70 % of C =>» graphite
30 % of C = amorphous carbon

The thin lines are for graphite-
astronomical silicate




9-3. Piled-up contour for carbon-asil-Fe bearing

50 % of Fe included in Fe grain
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50 % of Fe = astron.silicate
50 % of Fe =» Fe grains

The thin lines are for graphite-
astronomical silicate

50 % of Fe = astron.silicate
50 % of Fe = Fe304 grains

The thin lines are for graphite-
astronomical silicate




9-4. Piled-up contour for graphite-Mg2SiO4

Graphite-Mg2SiO4
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Graphite-Mg2SiO4-Fe

astronomical silicate (MgFeSiO4)
IS replaced with Mg2SiO4

The thin lines are for graphite-
astronomical silicate

all of Fe atoms are locked up in
Fe grains

The thin lines are for graphite-
astronomical silicate




10. Summary

* The observed ranges of NIR extinction from FMO7
do not match with the results from the CCM formula

-=>» The average interstellar extinction curve is not
necessarily universal in NIR regions

* For the power-law grain-size distribution

— The values of g and amax that satisfy the observed
10 ranges of FM07 are confined to narrow ranges

— There is no combination of g and amax that satisfy
the observed ranges when CCM results are adopted

— For any combinations of grain species considered,
the values of g and amax that meet the observed
extinction are distributed around 3.5 and 0.25 um



