2012/09/05

超新星放出ガス中でのダスト形成 と衝撃波中でのダスト破壊

<u>野沢 貴也(Takaya Nozawa)</u> 東京大学 国際高等研究所 カブリ数物連携宇宙研究機構(Kavli IPMU)

Collaborators;

T. Kozasa, A. Habe (Hokkaido University)

K. Maeda, K. Nomoto (IPMU), H. Umeda (U.T.)

N. Tominaga (Konan Univ.)

1. Introduction

 <u>supernovae (SNe)</u>: explosions of massive (early type) stars with MzAMS > 8 Msun

• SNe are important sources of interstellar dust?

- huge amounts of dust grains (>10⁸ M_{sun}) are detected in host galaxies of quasars at redshift z > 5
 - → 0.1 Msun of dust per SN is needed to explain such massive dust at high-z (e.g. Dwek et al. 2007)
- <u>contribution of dust mass from AGB stars and SNe</u>

n(AGB stars) / n(SNe) ~ 10-20

Mdust = 0.01-0.05 Msun per AGB (Zhukovska & Gail 2008) Mdust = 0.1-1.0 Msun per SN (Nozawa et al. 2003; 2007)

2. Dust Formation in Pop III SNe

2-1. Dust formation in primordial SNe

Nozawa+'03, ApJ, 598, 785

O Population III SNe model (Umeda & Nomoto'02)

- SNe II-P : Mzaмs = 13, 20, 25, 30 Msun (Е₅₁=1)
- **PISNe** : Mzams = 170 Msun (E_{51} =20), 200 Msun (E_{51} =28)

- nucleation and grain growth theory (Kozasa & Hasegawa'88)
- complete and no mixing of elements within the He-core
- complete formation of CO and SiO

2-2-1. Calculations of dust formation

- nucleation and grain growth theory taking account of chemical reaction at condensation (Kozasa & Hasegawa'87)
 - key species: gas species with the least collision frequency among reactants

key species controls the kinetics of the nucleation and grain growth

Dust species	Chemical reactions
$Fe_{(s)}$	$Fe_{(g)} \rightarrow Fe_{(s)}$
$FeS_{(s)}$	$Fe_{(g)} + S_{(g)} \rightarrow FeS_{(s)}$
$Si_{(s)}$	$Si_{(g)} \rightarrow Si_{(s)}$
$Ti_{(s)}$	$\mathrm{Ti}_{(\mathrm{g})} \to \mathrm{Ti}_{(\mathrm{s})}$
$V_{(s)}$	$V_{(g)} \rightarrow V_{(s)}$
$Cr_{(s)}$	$\operatorname{Cr}_{(g)} \to \operatorname{Cr}_{(s)}$
$Co_{(s)}$	$\mathrm{Co}_{(\mathrm{g})} \to \mathrm{Co}_{(\mathrm{s})}$
Ni _(s)	$Ni_{(g)} \rightarrow Ni_{(s)}$
Cu _(s)	$\mathrm{Cu}_{(\mathrm{g})} \to \mathrm{Cu}_{(\mathrm{s})}$
$C_{(s)}$	$C_{(g)} \rightarrow C_{(s)}$
$SiC_{(s)}$	$\mathrm{Si}_{(g)} + \mathrm{C}_{(g)} \to \mathrm{SiC}_{(s)}$
$TiC_{(s)}$	$\mathrm{Ti}_{(g)} + \mathrm{C}_{(g)} \to \mathrm{Ti}\mathrm{C}_{(s)}$
$Al_2O_{3(s)}$	$2Al_{(g)} + 3O_{(g)} \rightarrow Al_2O_{3(s)}$
$MgSiO_{3(s)}$	$Mg_{(g)} + SiO_{(g)} + 2O_{(g)} \rightarrow MgSiO_{3(s)}$
$Mg_2SiO_{4(s)}$	$2Mg_{(g)} + SiO_{(g)} + 3O_{(g)} \rightarrow Mg_2SiO_{4(s)}$
$SiO_{2(s)}$	$\mathrm{SiO}_{(g)} + \mathrm{O}_{(g)} \to \mathrm{SiO}_{2(s)}$
$MgO_{(s)}$	$Mg_{(g)} + O_{(g)} \rightarrow MgO_{(s)}$
$Fe_3O_{4(s)}$	$3Fe_{(g)} + 4O_{(g)} \rightarrow Fe_3O_{4(s)}$
$FeO_{(s)}$	$Fe_{(g)} + O_{(g)} \rightarrow FeO_{(s)}$

2-2-2. Nucleation rate of dust

Steady-state nucleation rate

$$J_s(t) = \alpha_s \Omega \left(\frac{2\sigma}{\pi m_1}\right)^{\frac{1}{2}} \Pi c_1^2(t) \exp\left[-\frac{4}{27} \frac{\mu^3}{\left(\ln S\right)^2}\right]$$

Supersaturation ratio

$$\ln S = \ln \left(\frac{p_1}{\mathring{p}_1}\right) = -\frac{1}{kT} \left(\mathring{g}_s - \mathring{g}_1\right) + \ln \left(\frac{p_1}{p_0}\right)$$

 α_s : sticking probability of key species ($\alpha_s = 1$, in the calculations)

- Ω : volume of the condensate per key species $(\Omega=4\pi a_0^3/3)$
- σ : surface energy of the condensate
- m_1 : mass of key species

$$c_1(t)$$
: number density of key species

 μ : $\mu \equiv 4\pi a_0^2 \sigma/kT$; energy barrier for nucleation

2-2-3. Basic equations for dust formation

Equation of mass conservation

$$c_{10} - c_1 = \int_{t_0}^t J_{n_*}(t') \frac{a^3(t,t')}{a_0^3} dt',$$

Equation of grain growth

$$\frac{da}{dt} = s\Omega_0 \left(\frac{kT}{2\pi m_1}\right)^{\frac{1}{2}} c_1 \left(1 - \frac{1}{S}\right),$$
$$\frac{dV}{dt} = s\Omega_0 \ 4\pi a^2 \left(\frac{kT}{2\pi m_1}\right)^{\frac{1}{2}} c_1 \left(1 - \frac{1}{S}\right),$$

Growth rate is independent of grain radius

2-3-1. Dust formed in primordial SNe

Nozawa+'03, ApJ, 598, 785

- Various dust species (C, MgSiO₃, Mg₂SiO₄, SiO₂, Al₂O₃, MgO, Si, FeS, Fe) form in the unmixed ejecta, according to the elemental composition of gas in each layer
- The condensation time: 300-600 days for SNe II-P 400-800 days for PISNe

2-3-2. Size distribution of newly formed dust

- C, SiO2, and Fe grains have lognormal size distribution, while the other grains have power-law size distribution
- The composition and size distribution of dust formed are almost independent of type of supernova (average dust radius is smaller for PISNe than SNe II-P)

2-3-3. Size distribution of dust in mixed cases

- Because oxygen is rich in the mixed ejecta, only silicates (MgSiO₃, Mg₂SiO₄, SiO₂) and oxides (Fe₃O₄, Al₂O₃) form
- The size distribution of each dust species except for Al₂O₃ is lognormal-like

2-3-4. Total mass of dust formed

- Total dust mass increases with increasing MZAMS
 SNe II: Mdust = 0.1-2 Msun, fdep = Mdust / Mmetal = 0.2-0.3
 PISNe: Mdust =10-60 Msun, fdep = Mdust / Mmetal = 0.3-0.5
- Dust mass for the mixed case is generally larger than for the unmixed case

<u>3. Dust Evolution in SNRs</u>

3-1-1. Time evolution of SNRs

• Basic equations (spherical symmetry) $\frac{\partial \rho}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \rho v) = 0$ $\frac{\partial}{\partial t}(\rho v) + \frac{1}{r^2}\frac{\partial}{\partial r}(r^2\rho v^2) = -\frac{\partial P}{\partial r}$ $\frac{\partial}{\partial t} \left(\frac{\rho v^2}{2} + \frac{P}{\gamma - 1} \right) + \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \left[\frac{\rho v^2}{2} + \frac{\gamma P}{\gamma - 1} \right] v \right)$ $= -(n_{\rm e}n_{\rm H}\Lambda_{\rm gas}(T) + \Lambda_{\rm ic}(T) + \Lambda_{\rm d}(n_{\rm H},T))$ $\Lambda_{gas}(T)$: cooling function of gas by the atomic process (Sutherland & Dopita 1993; Smith et al. 2001) $\Lambda_{\rm ic}(T)$: inverse Compton cooling (Ikeuchi & Ostriker 1986) $\Lambda_{\rm ic}(T) = 5.41 \times 10^{-32} (1+z)^4 n_e(T/10^4 \,{\rm K}) \text{ (we adopt } z = 20)$ $\Lambda_{\rm d}(n_{\rm H},T)$: cooling of gas through thermal emission of dust \cdot numerical code : flux splitting method (van Albada et al. 1982)

3-1-2. Initial condition for hydro calculations

• Hydrodynamical model of SNe (Umeda & Nomoto'02)

- SNe II : M_{pr}=13, 20, 25, 30 Msun (E₅₁=1)
- PISNe : M_{pr}=170 (E₅₁=20), 200 Msun (E₅₁=28)
- The ambient medium (homogeneous)
 - gas temperature : T = 10⁴ K
 - gas density : n_{H,0} = 0.1, 1, and 10 cm⁻³

Dust Model

initial size distribution and spatial distribution of dust
 results of dust formation calculations
 treating as a test particle

The calculation is performed from 10 yr up to ~10⁶ yr

3-2-1. Dynamics of dust

• deceleration of dust due to drag force (Baines et al. 1965)

 $\frac{dw_{\rm d}}{dt} = \frac{F_{\rm drag}}{m_{\rm d}} = -\frac{3n_{\rm H}kT}{2a\rho_{\rm d}}\sum_{i}A_{i}G_{i}(s_{i}) \quad (w_{\rm d}: \text{relative velocity})$

 $ho_{\rm d}$; mass density of a grain

 A_i ; the number abundance of gas species *i* normarized by $n_{\rm H}$

$$G_i(s_i) = \left(s_i^2 + 1 - \frac{1}{4s_i^2}\right) erf(s_i) + \left(s_i + \frac{1}{2s_i}\right) \frac{e^{-s_i^2}}{\sqrt{\pi}}$$

$$\Downarrow$$

 $G_i(s_i) \approx \frac{8s_i}{3\sqrt{\pi}} \left(1 + \frac{9\pi}{64}s_i^2\right)^{\frac{1}{2}}$ (Draine & Salpeter 1979)

where $s_i^2 = m_i w_d^2 / 2kT$

3-2-2. Erosion rate of dust by sputtering

• dust destruction by sputtering (e.g., Dwek, Foster & Vancura 1996)

$$\frac{da}{dt} = -\frac{m_{\rm sp}}{4\pi a^2 \rho_{\rm d}} \sum_i \mathcal{R}(Y_i(E))$$

 $Y_i(E) = 2Y_i^0(E)$; the angle-averaged sputtering yield $m_{\rm sp}$; average mass of the sputtered atoms

 rate equation over a modified Maxwellian distribution of gas taken account of relative velocity of dust to gas (e.g., Shull 1978)

$$\mathcal{R}(X_i(\epsilon)) = n_{\rm H} A_i \pi a^2 \left(\frac{8kT}{\pi m_i}\right)^{\frac{1}{2}} \frac{e^{-s_i^2}}{2s_i} \int \sqrt{\epsilon} e^{-\epsilon} \sinh(2s_i \sqrt{\epsilon}) X_i(\epsilon) d\epsilon$$

where $\epsilon = E/kT$

3-2-3. Erosion rate of dust by sputtering

Nozawa+'06, ApJ, 648, 435

 erosion rate by sputtering quickly increases above 10⁵ K and peaks at 10⁷-10⁸ K

erosion rate : da / dt ~ 10⁻⁶ n_H µm yr⁻¹ cm³
 for the primordial gas (H and He) at T > 10⁶ K

3-3-1. Temperature and density of gas in SNRs

Nozawa+'07, ApJ, 666, 955

Model :
$$M_{pr}$$
= 20 Msun (E₅₁=1)
 $n_{H,0}$ = 1 cm⁻³

Downward-pointing arrows: forward shock in upper panel reverse shock in lower panel

The temperature of the gas swept up by the shocks → 10⁶-10⁸ K ↓ Dust grains residing in the shocked hot gas are eroded

by sputtering

3-3-2. Evolution of dust in SNRs

Nozawa+'07, ApJ, 666, 955

Model : M_{pr} = 20 Msun (E₅₁=1) $n_{H,0}$ = 1 cm⁻³

Dust grains in the He core collide with reverse shock at $(3-13)x10^3$ yr

The evolution of dust heavily depends on the initial radius and composition

a_{ini} = 0.01 μm (dotted lines)

- → completely destroyed
- a_{ini} = 0.1 μm (solid lines)
 - trapped in the shell
- a_{ini} = 1 μm (dashed lines)
 - → injected into the ISM

3-3-3. Dust mass and size ejected from SN II-P

3-4. Summary of dust production in Pop III SNe

- Various species of dust form in the unmixed ejecta (almost all Fe, Mg, and Si atoms are locked in dust)
- The fate of newly formed dust within primordial SNRs strongly depends on the initial radii and compositions.
- The size distribution of dust surviving the destruction in SNRs is weighted to relatively large size (> 0.01 µm).
- The total mass of dust injected into the ISM decreases with increasing the ambient gas density

for n_{H,0} = 0.1-1 cm⁻³ SNe II-P → Mdust = 0.1-0.8 Msun PISNe → Mdust = 0.1-15 Msun

3. Formation of dust grains in various types of SNe

5-1. Dust formation in Type IIb SN

O SN IIb model (SN1993J-like model)

5-2. Dependence of dust radii on SN type

5-3. Destruction of dust in Type IIb SNR

 $n_{H,1} = 30, 120, 200 / cc \rightarrow dM/dt = 2.0, 8.0, 13x10^{-5} M_{sun}/yr$ for vw=10 km/s

Almost all newly formed grains are destroyed in shocked gas within the SNR for CSM gas density of $n_{\rm H} > 0.1$ /cc

→ small radius of newly formed dust

→ early arrival of reverse shock at dust-forming region

Nozawa+'10, ApJ, 713, 356

5-4. IR emission from dust in Cas A SNR

Nozawa et al. 2010, ApJ, 713, 356

AKARI corrected 90 µm image

AKARI observation Md,cool = 0.03-0.06 Msun Tdust = 33-41 K (Sibthorpe+'10)

Herschel observation Md,cool = 0.075 Msun Tdust ~ 35 K (Barlow+'10)

6. Summary of this talk

- SNe are important sources of dust?
 - maybe, Yes in the early universe
 (at least, to serve the seeds for grain growth in the ISM)
- Size of newly formed dust depends on types of Sne
 - H-retaining SNe (Type II-P) : aave > 0.01 μm
 - H-stripped SNe (Type IIb/Ib/Ic and Ia) : aave < 0.01 μm
 → dust is almost completely destroyed in the SNRs
 → H-stripped SNe may be poor producers of dust
- Our model treating dust formation and evolution selfconsistently can reproduce IR emission from Cas A
- Mass of dust in SNe must be dominated by cool dust
 FIR and submm observations of SNe are essential