2013/05/30

Dust in the ejecta of supernovae

Takaya Nozawa

Kavli IPMU (Kavli Institute for the Physics and Mathematics of the Universe)

Collaborators:

K. Maeda, K. Nomoto (Kavli IPMU)

T. Kozasa, A. Habe (Hokkaido University)

H. Umeda (U.T.), N. Tominaga (Konan Univ.)

HEMATICS OF

1-1. Introduction

O SNe (and SNRs) are sources of

– cosmic ray

- kinetic and radiative energies
- heavy elements
- dust grains

1-2. Sources of dust in our Galaxy

Milky Way (optical)

Milky Way (infrared)

SNe are important sources of interstellar dust?

– <u>number (occurrence) ratio of SNe to AGB stars</u>

n(SNe) / n(AGB stars) ~ 0.05-0.1

Mdust = 0.1-1.0 Msun per SN (Nozawa et al. 2003; 2007) Mdust = 0.01-0.05 Msun per AGB (Zhukovska & Gail 2008)

1-3. Sources of dust in the early universe

huge amounts of dust grains (>10⁸ M_{sun}) are detected in host galaxies of quasars at redshift z > 5 (< 1 Gyr)

- → SNe arising from short-lived massive stars must be main producers of dust
- → 0.1 Msun of dust per SN is needed to be ejected to explain such massive dust at high-z (Dwek et al. 2007)

2-1. Summary of observed dust mass in CCSNe

What fraction of the newly formed grains can survive to be injected into the interstellar space?

2-1. Summary of observed dust mass in CCSNe

2-2. Emission and absorption efficiency of dust

O Thermal radiation from a dust grain

 10^{1}

 $F_{\lambda} \propto 4\pi a^2 \operatorname{Qemis}(a,\lambda) \pi B_{\lambda}(Tdust) # \operatorname{Qemis} = \operatorname{Qabs}$ 10^{1} silicate carbon 0.1 µm 0.1 µm 10

2-3. Composition of dust formed in SNe

3. Formation and evolution of dust

in supernovae

3-1. Dust formed in Type II-P SNe

3-2. Evolution of dust in SNRs

Nozawa+07, ApJ, 666, 955

Model : Type II-P M_{pr} = 20 Msun (E₅₁=1) $n_{H,0}$ = 1 cm⁻³

Dust grains in the He core collide with reverse shock at (3-13)x10³ yr

The evolution of dust heavily depends on the initial radius and composition

a_{ini} = 0.01 μm (dotted lines)

- → completely destroyed
- a_{ini} = 0.1 μm (solid lines)
 - trapped in the shell
- a_{ini} = 1 μm (dashed lines)
 - → injected into the ISM

3-3. Mass and size of dust ejected from SN II-P

4-1. Dust formation in Type IIb SN

O SN IIb model (SN1993J-like model)

4-2. Dependence of dust radii on SN type

4-3. Evolution of dust in Type IIb SNR

5-1. Scaling relation of average grain radius

Non: ratio of supersaturation timescale to gas collision timescale at the time of dust formation

<u>∧on = Tsat/Tcoll ∝ Tcool Ngas</u>

where $T_{cool} = t_{on} / 3 (\gamma - 1)$

Nozawa & Kozasa in prep

5-2. Dust formation in Type IIn SN 2010jl

5-3. Average grain size in SNe 2010jl and 1987A

6. Summary of this talk

O There are increasing pieces of observational evidence that CCSN is a production factory of massive dust

- → in good agreement with 0.1-1 Msun predicted by theory
- → few observation to identify the composition and size of dust

O Size of newly formed dust depends on types of SNe

- H-retaining SNe (Type II-P) : aave > 0.01 μm
- H-stripped SNe (Type IIb/Ib/Ic) : aave < 0.01 μm
 - → H-stripped SNe are likely to be poor producers of dust
- O We construct the universal relation to describe the average radius of newly formed dust grains
 - → being useful, given gas density and formation time of dust
 - → explaining grain size derived from observations of SN 2010jl