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1-1. Sources of dust in the early unvierse

= Origin of massive dust at high redshifts (z > 5)

- core-collapse supernovae (CCSNe) may be promising sources
of dust grains (e.g., Todini & Ferrara 2001; Nozawa+2003; Dwek+2007)

- the contribution from AGB stars is also invoked to explain the
observed dust mass (e.g., Valiante+2009: Dwek & Cherchneff 2011)

=> what stellar mass range can mainly contribute dust
budget in the early universe depends on the stellar IMF
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1-2. Very massive Population lll stars

* Role of very massive stars (Mzams > ~250 Msun)

Final fates of rotating massive Pop Il stars

- emitting numerous ionizing photons N Forbiadon revon
-> reionization of the universe 081\ GRB/HN5- y
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2-1. Dust formation calculations

| Formula of non-steady-state dust formation (Nozawa & Kozasa 2013) |

- Master equations of cluster formation n+= 100
¥4

de,,

dt

= Ja(t) — Jp(t) for 2<n < ﬂ-*,/

where Ju(t) = an_161 [ch1 — ¢ exXp(vn)] -
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- Equation of grain growth
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2-2. Scaling relation of average grain radius
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Aon = Tsat(ton)/ Tcoll(t'on) Aon = Tsat(ton)/ Tcoll(t'on)

Non = Tsat/Tcoll : ratio of supersaturation timescale to gas
collision timescale at the onset time (ton) of dust formation

Non = Tsat/Tcoll ©€ Tcool Ngas

= fcon,~» and aave,~ are uniquely determined by Aon
- steady-state nucleation rate is applicable for Aon > 30




3-1. Model of Pop lll red-supergiant winds

 RSG model: m500vkO0O (Yoon+2012)

- MzAMS = 500 Msun (no rotation)
- L =1072 Lsun, Tstar = 4440 K, Rstar = 6750 Rsun
- AC = 3.11x103, A0 = 1.75x103=> C/O =1.78, Z = 0.034

- Model of circumstellar envelope

- spherically symmetry, constant wind velocity

_ _ M r\ 2
- density profile:  p(r) = =p | =

Ao, R,
1

- temperature profile: T(r)="1T. (L)

* Fiducial values of Mdot and Vw

- wind velocity: vw = 20 km/s
- mass-loss rate: Mdot = 0.003 Msun/yr
=>» losing 90% (208 Msun) of envelope during 7x10% yr



3-2. Chemical equilibrium calculations
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chemical reactions considered in this study

(1) Model A C Ch1+C=C, (n>2)

(2) Model B CoH 2(CoH + H) = Ca,, + 2H, (n =2)
Con_1) + CoH + H=1C2, + H2  (n>3)

- parameter fc: a fraction of carbon available for dust formation
- fc =1 as the fiducial case




4-1. Results of dust formation calculations
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- carbon grains form around r = 7.5 Rstar (r = 12 Rstar) for
Model A (Model B)
- final condensation efficiency is unity for both of the models
- final average radius is similar in both Model A and Model B
-> the results are almost independent of chemical reactions




4-2. Dependence on Mdot and vw
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- The condensation efficiency of dust is unity for the condition;

M o 5
) ( o ) > 0.04.
3 x10=3 M yr—! 20 km s—1 ~

- for the fiducial case (Mdot = 3x10-3 Msun/yr, vw=20 km/s, fc=1)

= producing 1.7 Msun of C grains over the lifetime of the RSG




5-1. How efficient is dust formation?

* Dust ejection efficiency by very massive Pop Il RSGs

- XVMS = Mdust / MzAaMS < 3.4x103
- Mdust / Mmetal < 0.24

* Dust ejection efficiency by CCSNe (PISNe)

- XcCsN = (0.1-30)x103 (XPISN < 0.05)

- Mdust / Mmetal = 0.01-0.25 (Mdust / Mmetal < 0.15)

## depending on the destruction efficiency 21
## of dust by the reverse shock ol

If NvMS ~ NccsN in the Pop 1l IMF ...
=>» The contribution of dust from very
massive RSGs is comparable with,

NStEI’

or even higher than that from CCSNe 2 |

(XvMs Nvms) / (XccsN NccsN) > ~1 0

Hirano+2013




5-2. Expected extinction curves
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- Extinction curves derived in this study do not resemble any of
the known extinction law such as those in the MW and SMC

- The extinction curves observed for high-z quasars do not show
a bump structure, being inconsistent with those given here
=>» These extinction curves can be powerful tools to probe
the formation of C grains in very massive Pop Il stars




5-3. Composition of low-mass UMP stars

- The ultra-metal-poor stars with [Fe/H] < -4 record chemical
imprint of Population Il stars

- The formation of such low-mass metal-poor stars is triggered

through the cooling of gas by dust produced by Pop Il SNe
(e.g., Schneider+2012a, 2012b; Chiaki+2013)

 Possible channel for C-rich UMP star formation

- Very massive Pop |ll RSGs are sources of carbon grains as
well as CNO elements
=> In the gas clouds enriched by Pop Ill RSGs, carbon grains
enable the formation of low-mass stars whose chemical
compositions are highly enriched with CNO

- We do not predict the presence of any heavier elements
=> Further observations and more guantitative theoretical
studies are needed to show whether any UMP stars have
formed through our scenario



6. Summary

We examine the formation of dust grains in a carbon-rich
mass-loss wind of a Pop Il RSG with Mzams = 500 Msun

- For a steady stellar wind, C grains can form with a lognormal-like
size distribution whose average radius is sensitive to wind velocity

- The condensation efficiency is unity for

cjf Uw -2
: - ( - ) > 0.04.
3 x 1073 M, yr—t 20 km s—1 ~

- The mass of C grains is <1.7 Msun (Mdust/MzAMS < 3.4x103), which
would be high enough to have impacts on dust enrichment history
In the early universe, if the IMF of Pop lll stars were top-heavy



