2014/02/19

Formation and Destruction Processes of Dust in Supernovae

Takaya Nozawa

(Kavli IPMU, University of Tokyo)

Main collaborators:

<u>T. Kozasa</u>, <u>A. Habe</u> (Hokkaido University) <u>K. Maeda</u> (Kyoto Unviersity), <u>K. Nomoto</u> (Kavli IPMU) <u>H. Umeda</u> (University of Tokyo), <u>M. Tanaka</u> (NAOJ) <u>N. Tominaga</u> (Konan University)

0-1. Sources of dust in our Galaxy

Milky Way (optical)

Milky Way (infrared)

SNe are important sources of interstellar dust?

– <u>number (occurrence) ratio of SNe to AGB stars</u>

n(SNe) / n(AGB stars) ~ 0.05-0.1

Mdust = 0.1-1.0 Msun per SN (Nozawa et al. 2003; 2007) Mdust = 0.01-0.05 Msun per AGB (Zhukovska & Gail 2008)

0-2. Formation site of dust

O Formation sites of dust

- abundant metal (metal : Z > 5)
- low gas temperature (T < ~2000 K)
- high gas density (n > ~10⁶ cm⁻³)

- <u>mass-loss winds of AGB stars</u>
- <u>expanding ejecta of supernovae</u>
- molecular clouds (grain growth only)
- red giant, W-R stars, novae, protoplanetary disk ...

→ relative contribution of these sources is unclear!

1. Observations of Dust Formation in SNe (and SNRs)

1-1. Summary of observed dust mass in CCSNe

Far-IR to sub-mm observations are essential for revealing the mass of dust grains produced in the ejecta of SNe

1-1. Summary of observed dust mass in CCSNe

Dust Evolution in SNRs

1-2. ALMA reveals dust formed in SN 1987A

Indebetouw+2014

ALMA spatially resolves cool (~20K) dust of ~0.5 Msun formed in the ejecta of SN 1987A

→ SNe could be production factories of dust grains

1-3. Emission and absorption efficiency of dust

O Thermal radiation from a dust grain

 10^{1}

 $F_{\lambda} \propto 4\pi a^2 \operatorname{Qemis}(a,\lambda) \pi B_{\lambda}(Tdust) # \operatorname{Qemis} = \operatorname{Qabs}$ 10^{1} silicate carbon 0.1 µm 0.1 µm

1-4. Origin of IR emission from SNe

1-5. Evidence for dust formation in SN 2006jc

1-6. Composition of dust formed in SNe

1-7. Dust formation in Type IIn SN 2010jl

2. Dust Formation in Type IIb SNe

2-0. How do dust grains form?

2-1. Calculations of dust formation

- nucleation and grain growth theory taking account of chemical reaction at condensation (Kozasa & Hasegawa'87)
 - key species: gas species with the least collision frequency among reactants

key species controls the kinetics of the nucleation and grain growth

Dust species	Chemical reactions
$Fe_{(s)}$	$Fe_{(g)} \rightarrow Fe_{(s)}$
$FeS_{(s)}$	$Fe_{(g)} + S_{(g)} \rightarrow FeS_{(s)}$
$Si_{(s)}$	$\mathrm{Si}_{(g)} \to \mathrm{Si}_{(s)}$
$Ti_{(s)}$	$\mathrm{Ti}_{(\mathrm{g})} \to \mathrm{Ti}_{(\mathrm{s})}$
$V_{(s)}$	$V_{(g)} \rightarrow V_{(s)}$
$Cr_{(s)}$	$\operatorname{Cr}_{(g)} \to \operatorname{Cr}_{(s)}$
$Co_{(s)}$	$\mathrm{Co}_{(\mathrm{g})} \to \mathrm{Co}_{(\mathrm{s})}$
$Ni_{(s)}$	$Ni_{(g)} \rightarrow Ni_{(s)}$
Cu _(s)	$\mathrm{Cu}_{(\mathbf{g})} \to \mathrm{Cu}_{(\mathbf{s})}$
$C_{(s)}$	$C_{(g)} \rightarrow C_{(s)}$
$SiC_{(s)}$	$\mathrm{Si}_{(g)} + \mathrm{C}_{(g)} \to \mathrm{Si}\mathrm{C}_{(s)}$
$TiC_{(s)}$	$\mathrm{Ti}_{(g)} + \mathrm{C}_{(g)} \to \mathrm{Ti}\mathrm{C}_{(s)}$
$Al_2O_{3(s)}$	$2Al_{(g)} + 3O_{(g)} \rightarrow Al_2O_{3(s)}$
$MgSiO_{3(s)}$	$Mg_{(g)} + SiO_{(g)} + 2O_{(g)} \rightarrow MgSiO_{3(s)}$
$Mg_2SiO_{4(s)}$	$2Mg_{(g)} + SiO_{(g)} + 3O_{(g)} \rightarrow Mg_2SiO_{4(s)}$
$SiO_{2(s)}$	$\mathrm{SiO}_{(g)} + \mathrm{O}_{(g)} \to \mathrm{SiO}_{2(s)}$
$MgO_{(s)}$	$Mg_{(g)} + O_{(g)} \rightarrow MgO_{(s)}$
$Fe_3O_{4(s)}$	$3Fe_{(g)} + 4O_{(g)} \rightarrow Fe_3O_{4(s)}$
$FeO_{(s)}$	$Fe_{(g)} + O_{(g)} \rightarrow FeO_{(s)}$

2-2. Formulation of dust formation

master equations

$$\frac{dc_n}{dt} = J_n(t) - J_{n+1}(t) \text{ for } 2 \le n \le n_*,$$

$$J_n(t) = \alpha_{n-1}c_{n-1}c_1 - \beta_n c_n \text{ for } 2 \le n \le n_*,$$

$$\alpha_n = \frac{s_n}{1+\delta_{1n}} \ 4\pi a_0^2 \ n^{\frac{2}{3}} \left(\frac{kT}{2\pi m_n}\right)^{\frac{1}{2}}, \qquad \beta_n = \alpha_{n-1} \frac{\mathring{c}_{n-1}}{\mathring{c}_n} \mathring{c}_1,$$

2-3. Steady-state nucleation rate

steady-state nucleation rate: Js → assuming Js = J2 = J3 = ··· = J∞

$$(n_{\rm c} - 1)^{\frac{1}{3}} = \frac{2}{3} \frac{\mu}{\ln S}.$$

where μ = 4πa₀²σ / kT σ: surface tension

S : supersaturation ratio (S = p1 / p1v)

$$J_{\rm s} = s_{\rm crit} \Omega_0 \left(\frac{2\sigma}{\pi m_1}\right)^{\frac{1}{2}} c_1^2 \Pi \exp\left[-\frac{4}{27} \frac{\mu^3}{(\ln S)^2}\right],$$

2-4. Basic equations for dust formation

Equation of mass conservation

$$c_{10} - c_1 = \int_{t_0}^t J_{n_*}(t') \frac{a^3(t,t')}{a_0^3} dt',$$

Equation of grain growth

$$\frac{da}{dt} = s\Omega_0 \left(\frac{kT}{2\pi m_1}\right)^{\frac{1}{2}} c_1 \left(1 - \frac{1}{S}\right),$$
$$\frac{dV}{dt} = s\Omega_0 \ 4\pi a^2 \left(\frac{kT}{2\pi m_1}\right)^{\frac{1}{2}} c_1 \left(1 - \frac{1}{S}\right),$$

Growth rate is independent of grain radius

2-5. Dust formation calculation in the ejecta

O Dust formation calculation

O SN II-P model : MH-env = 13 Msun, MZAMS = 20 Msun, E51 =1 (Umeda & Nomoto 2002)

2-6. Birth of dust in the ejecta of Cas A

2-7. Dependence of dust radii on SN type

3. Dust Destruction in Cas A

3-1. Time evolution of SNRs

• Basic equations (spherical symmetry) $\frac{\partial \rho}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \rho v) = 0$ $\frac{\partial}{\partial t}(\rho v) + \frac{1}{r^2}\frac{\partial}{\partial r}(r^2\rho v^2) = -\frac{\partial P}{\partial r}$ $\frac{\partial}{\partial t} \left(\frac{\rho v^2}{2} + \frac{P}{\gamma - 1} \right) + \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \left[\frac{\rho v^2}{2} + \frac{\gamma P}{\gamma - 1} \right] v \right)$ $= -(n_{\rm e}n_{\rm H}\Lambda_{\rm gas}(T) + \Lambda_{\rm ic}(T) + \Lambda_{\rm d}(n_{\rm H},T))$ $\Lambda_{gas}(T)$: cooling function of gas by the atomic process (Sutherland & Dopita 1993; Smith et al. 2001) $\Lambda_{\rm ic}(T)$: inverse Compton cooling (Ikeuchi & Ostriker 1986) $\Lambda_{\rm ic}(T) = 5.41 \times 10^{-32} (1+z)^4 n_e(T/10^4 \,{\rm K}) \text{ (we adopt } z = 20)$ $\Lambda_{\rm d}(n_{\rm H},T)$: cooling of gas through thermal emission of dust \cdot numerical code : flux splitting method (van Albada et al. 1982)

3-2. Dynamics of dust

• deceleration of dust due to drag force (Baines et al. 1965)

 $\frac{dw_{\rm d}}{dt} = \frac{F_{\rm drag}}{m_{\rm d}} = -\frac{3n_{\rm H}kT}{2a\rho_{\rm d}}\sum_{i}A_{i}G_{i}(s_{i}) \quad (w_{\rm d}: \text{relative velocity})$

 $ho_{\rm d}$; mass density of a grain

 A_i ; the number abundance of gas species *i* normarized by $n_{\rm H}$

$$G_i(s_i) = \left(s_i^2 + 1 - \frac{1}{4s_i^2}\right) erf(s_i) + \left(s_i + \frac{1}{2s_i}\right) \frac{e^{-s_i^2}}{\sqrt{\pi}}$$

$$\Downarrow$$

 $G_i(s_i) \approx \frac{8s_i}{3\sqrt{\pi}} \left(1 + \frac{9\pi}{64}s_i^2\right)^{\frac{1}{2}}$ (Draine & Salpeter 1979)

where $s_i^2 = m_i w_d^2 / 2kT$

3-3. Erosion rate of dust by sputtering

• dust destruction by sputtering (e.g., Dwek, Foster & Vancura 1996)

$$\frac{da}{dt} = -\frac{m_{\rm sp}}{4\pi a^2 \rho_{\rm d}} \sum_i \mathcal{R}(Y_i(E))$$

 $Y_i(E) = 2Y_i^0(E)$; the angle-averaged sputtering yield $m_{\rm sp}$; average mass of the sputtered atoms

 rate equation over a modified Maxwellian distribution of gas taken account of relative velocity of dust to gas (e.g., Shull 1978)

$$\mathcal{R}(X_i(\epsilon)) = n_{\rm H} A_i \pi a^2 \left(\frac{8kT}{\pi m_i}\right)^{\frac{1}{2}} \frac{e^{-s_i^2}}{2s_i} \int \sqrt{\epsilon} e^{-\epsilon} \sinh(2s_i \sqrt{\epsilon}) X_i(\epsilon) d\epsilon$$

where $\epsilon = E/kT$

3-4. Erosion rate of dust by sputtering

Nozawa+2006, ApJ, 648, 435

 erosion rate by sputtering quickly increases above 10⁵ K and peaks at 10⁷-10⁸ K

erosion rate : da / dt ~ 10⁻⁶ n_H µm yr⁻¹ cm³
 for the primordial gas (H and He) at T > 10⁶ K

3-5. Calculation of dust evolution in SNRs

O Dust evolution calculations (Nozawa et al. 2006, 2007)

 spherical symmetric hydrodynamic calculation based on the ejecta model of the SN IIb 2×10¹⁹ $n_{H.1} = 120 \text{ cm}^{-3}$ He-core

10¹⁹

5×10¹⁸

Si

reverse

distance (cm)

- treating dust as a test particle
 - erosion by sputtering
 - deceleration by gas drag

<u>3-6. Fate of dust in Cas A SNR</u>

 All of the dust grains in Cas A would be destroyed in the shocked gas within the SNR before ~2x10⁴ yr
 → small grain size of newly formed dust
 → early arrival of the reverse shock at the He core
 H-deficient SNe may not be major contributors of dust

0.01-0.8 Msun of dust survive for SNe II-P (Nozawa+2007)

3-7. Comparison with observations of Cas A

- MIR, d = 0.008 Msun
 (Mshocked, d ~ 0.1 Msun)
- − dM/dt = 8x10⁻⁵ Msun/yr
 → dM/dt ~ 2x10⁻⁵ Msun/yr for Cas A (Chevalier & Oishi 2003)
 → dM/dt = (3-4)x10⁻⁵ Msun/yr for 93J (Suzuki & Nomoto1995)

3-8. Contribution from unshocked dust

<u>Summary</u>

1) Birth of Dust in the ejecta of Cas A

Dust formed in Cas A was formed at 300-700 days after the explosion with $a_{dust} < 0.01 \ \mu m$ and $M_{dust} = 0.167 \ M_{sun}$

2) Brightening of dust in the shocked hot gas Model of dust destruction and heating in Type IIb SNR can reasonably reproduce the observed SED of Cas A; Md,warm = 0.008 Msun, Md,cool = 0.07 Msun dM/dt = ~8x10⁻⁵ Msun/yr

3) Fate of dust in Cas A SNR

Small dust grains in Cas A will be completely destroyed in the shocked gas without being injected into the ISM