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1. Formulation of non-steady-state
Nucleation



1-1. Uncertainty in classical nucleation theory

= Application of classical nucleation theory

- sticking coefficient? =>» usually s =1

- surface energy of small clusters? = same as the bulk material

- cluster temperature? =>» Tclus = Tgas
- shape of small clusters? => sphere

- cluster-cluster reactions? = no

- steady-state nucleation, which cannot be applied in rarefied

astrophysical environments
(e.g., Donn & Nuth 1985, but see also Paquette & Nuth 2011)

## molecular formation?
=>» complete formation of CO and SiO molecules



1-2. Concept of nucleation theory
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1-3. Non-steady-state nucleation

- steady-state nucleation rate: Js
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1-4. Scaling relation of average grain radius
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Mon = Tsat/Tcoll

. ratio of supersaturation timescale to gas
collision timescale at the onset time (ton) of dust formation

Non = Tsat/Tcoll ©€ Tcool Ngas

= fcon,» and aave,» are uniquely determined by Aon
= steady-state nucleation rate is applicable for Aon > 30




1-5. Scaling relation of average grain radius
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2. Dust Formation in RSG winds of
Very Massive Population Il Stars



2-1. Sources of dust in the early unvierse

= Origin of massive dust at high redshifts (z > 5)

- core-collapse supernovae (CCSNe) may be promising sources
of dust grains (e.g., Todini & Ferrara 2001; Nozawa+2003; Dwek+2007)

- the contribution from AGB stars is also invoked to explain the
observed dust mass (e.g., Valiante+2009: Dwek & Cherchneff 2011)

=> what stellar mass range can mainly contribute dust
budget in the early universe depends on the stellar IMF

"2 Hirano+2014 =
+ Typical mass of Pop lll stars of = |
- Pop lll stars may be much more & |
massive than Pop I/l stars 7 6 )
- ~40 Msun (Hosokawa+2011; Susa 2013) 4|
- >300 Msun (Omukai+2003; Ohkubo+2009) o | |
- 10-1000 Msun (Hirano+2014) o LU q }

1000




2-2. Very massive Population lll stars

* Role of very massive stars (Mzams > ~250 Msun)

- emitting numerous ionizing photons
=>» reionization of the universe

- finally collapsing into black holes
=>» serving as seeds of SMBHSs

= Evolution of massive Pop lll stars

- non-rotating stars with Mzams > 250Msu
undergo convective dredge-up of C and
O during the RSG phase (Yoon+2012)

- enriching the surrounding medium
with CNO through the RSG winds
=>» serving as formation sites of dust

Dust grains formed in the winds are not
likely to be destroyed by the SN shocks
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2-3. Model of Pop Ill red-supergiant winds

 RSG model: m500vkO0O (Yoon+2012)

- MzAMS = 500 Msun (no rotation)
- L =1072 Lsun, Tstar = 4440 K, Rstar = 6750 Rsun
- AC = 3.11x103, A0 = 1.75x103=> C/O =1.78, Z = 0.034

- Model of circumstellar envelope

- spherically symmetry, constant wind velocity

_ _ M r\ 2
- density profile:  p(r) = =p | =

Ao, R,
1

- temperature profile: T(r)="1T. (L)

* Fiducial values of Mdot and Vw

- wind velocity: vw = 20 km/s
- mass-loss rate: Mdot = 0.003 Msun/yr
=>» losing 90% (208 Msun) of envelope during 7x10% yr



2-4. Chemical equilibrium calculations
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chemical reactions considered in this study

(1) Model A C Cho1+C=0C, (n=>2)

(2) Model B CoH 2(CoH + H) = Ca,, + 2H> (n =2)
Con_1) + C2H + H=C2, + Hz2  (n = 3)

- parameter fc: a fraction of carbon available for dust formation
- fc =1 as the fiducial case
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5. Results of dust formation calculations

10! behavior of dust formation final size distribution of dust
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- carbon grains form around r = 7.5 Rstar (r = 12 Rstar) for
Model A (Model B)
- final condensation efficiency is unity for both of the models
- final average radius is similar in both Model A and Model B
- the results are almost independent of chemical reactions




2-6. Dependence on Mdot and vw
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- The condensation efficiency of dust is unity for the condition;

M o 5
) ( o ) > 0.04.
3 x10=3 M yr—! 20 km s—1 ~

- for the fiducial case (Mdot = 3x10-3 Msun/yr, vw=20 km/s, fc=1)

- 1.7 Msun of C grains is produced over the lifetime of the RSG




2-7. How efficient is dust formation?

* Dust ejection efficiency by very massive Pop Il RSGs

- XVMS = Mdust / MzAMS < 3.4x10°3
- Mdust / Mmetal < 0.24

* Dust ejection efficiency by CCSNe (PISNe)

- XcCsN = (0.1-30)x103 (XPISN < 0.05)
- Mdust / Mmetal = 0.01-0.25 (Mdust / Mmetal < 0.15) Hirano+2014

## The ranges above reflects the destruction 2] s
## efficiency of dust by the reverse shock ol

8 | CCSNK
If NVMS ~ NccsN in the Pop IlIl IMF ... i
=>» The contribution of dust from very
massive RSGs is comparable with,

or even higher than that from CCSNe 2 |

Nst:ar
o

(XvMs Nvms) / (XccsN NccsN) > ~1 i



2-8. Expected extinction curves
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- Extinction curves derived in this study do not resemble any of
the known extinction law such as those in the MW and SMC

- The extinction curves observed for high-z quasars do not show
a bump structure, being inconsistent with those given here
=>» The derived extinction curves can be powerful tools to probe
the formation of C grains in very massive Pop Il stars




2-9. Composition of low-mass UMP stars

- The ultra-metal-poor (UMP) stars with [Fe/H] < -4 would record
chemical imprints of Population Il stars

- The formation of such low-mass metal-poor stars is triggered

through the cooling of gas by dust produced by Pop Il SNe
(e.g., Schneider+2012a, 2012b; Chiaki+2014)

 Possible channel for C-rich UMP star formation

- Very massive Pop |ll RSGs are sources of carbon grains as
well as CNO elements
=> In the gas clouds enriched by Pop Ill RSGs, carbon grains
enable the formation of low-mass stars whose chemical
compositions are highly enriched with CNO

- We do not predict the presence of heavier elements (Mg, SI, Fe)
=> Further observations and more guantitative theoretical
studies are needed to show whether any UMP stars have
formed through our scenario



2-10. Summary

We have examined the possibility of dust formation in a carbon-rich
mass-loss wind of a Pop Ill RSG with MzamMs = 500 Msun

- For a steady stellar wind, C grains can form with a lognormal-like
size distribution whose average radius is sensitive to wind velocity

- The condensation efficiency is unity for

cﬂj Y —2
J ( i ) > (.04,
3x 1073 M, yr—1 20 km s—!

=> the first dust grains in the universe ??

- The mass of C grains is <1.7 Msun (Mdust/MzAMS < 3.4x103), which
would be high enough to have impacts on dust enrichment history
In the early universe, if the IMF of Pop Ill stars were top-heavy

# The extinction curves expected from ejected C grains are different from
any known ones

# The chemical feedback by Poplll VMSs predicts a new type of UMP stars




3. Dust Formation in Macronovae



3-1. Sources of r-process elements

- What are sources of r-process elements?

80

=> r-process elements (N > 56) must be
created in neutron-rich environments

60

40

- core-collapse supernovae and/or
proto-neutron star wind
(e.g., Wanajo+2011; Wanajo 2013)

20

from Waﬁajo’s website

- mergers of neutron stars (NS)-NS and/or NS-BH binary

i (e.g., Korobkin et al. 2012; Bauswein et al. 2013)
- ejecta mass: iZ 3
Mej=0.01-0.1 Msun :°| gk ’
-ejectavelocity: — of T | TR :
B=v/c=0.1-0.3 Cleese o] fap ' .
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3-2. Emission from NS-NS/NS-BH mergers

= Compact star mergers: promising sources of GWSs

- position determination with GWs are very uncertain
=> it is needed to probe emission at other wavelengths

- r-process elements, especially lanthanoids, give high opacity
in optical: k~10 cm?/g compared to k~0.1 cm?/g in SNe
-> emission from radioactive nuclei "
is emitted at infrared wavelengths  _ .}

1

K (cm2 g

0.1 F

= Macronovae (or called kilonovae)
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-> electromagnetic emission involved Tanaka & Hoto 42013
In NS-NS and/or NS-BH mergers

(energy inputs may be due to decay T

of radioactive r-process elements)

16 |
a2
a2 L
# ref. Energy inputs of other eruptive objects q0 |

- novae: explosive nucleosynthesis on the surface sl

- supernovae: decay of 56Ni produced at explosion o i N Nog o Ve g
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Days after the merger
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3-3. Macronovae: GRB 130603B
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Gamma-ray bursts (GRBS)

- Short GRBs (<~2 sec):
originating from mergers of
compact objects

- Long GRBs (~2-10 sec):
originating from collapses of
massive stars

(accompnied with SNe Ib/Ic)

excess of NIR around 7 day

- processing of optical light by
r-process elements

- NS-NS (NS-BH) merger is the
formation sites of r-process
elements




3-4. Dust formation in Macronovae

Dust formation calculations

condensation efficiency
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3-5. Dust in Macronovae

flux; F, (mJy)

thermal emission from C grains
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- NIR detection of GRB 130603B
around 7 day can be explained
by thermal emission from hot
(~1800 K) C grains with the
mass of ~10- Msun

Takami, TN, loka 2014 in prep
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- NS-NS merger (AQ/417~1)
=> McC = 4x1023 Msun

- NS-BH merger (AQ/41~0.1)
=> McC = 4x104 Msun




3-6. Summary

We have examined the possibility of dust formation in the ejecta of
macronovae based on observed properties of GRB 130603B

- In the high-density case with efficient r-process nucleosynthesis,
r-process elements never condense into dust grains even if they
are abundantly produced

- In the low-density case with inefficient r-process nucleosynthesis,
carbon grains can form with quite small radius (<0.02 pm)

- The near-infrared excess observed for GRB 130603B is explained
by thermal emission of carbon dust formed in the ejecta

# sources of cosmic dust :
- SNe (Type Il SNe and Type la SNe),
- mass-loss winds of evolved stars (AGB, RSG and WR stars)
- mass-loss winds of massive main-sequence stars

=>» Extreme astronomical objects are good laboratories for examining
the process of dust formation (testing the theory of dust formation)



