2014/06/25

Current understandings on dust formation in supernovae

Takaya Nozawa

(NAOJ, Division of theoretical astronomy)

Main collaborators:

Masaomi Tanaka (NAOJ, theory) Keiichi Maeda (Kyoto University) Takashi Kozasa, Asao Habe (Hokkaido University) Hideyuki Umeda (University of Tokyo) Ken'ichi Nomoto (Kavli IPMU)

0-1. My research interests

- Formation of dust in the ejecta of supernovae
- Dynamics, destruction, and heating of dust grains in high-velocity shock waves
- Evolution of grain size distribution in galaxies and interstellar extinction curves
- Origin of dust grains in the early universe and the roles of dust in star formation
- Formation of dust in stellar winds and mass-loss history at late phases of stellar evolution

0-2. Introduction

SNe are important sources of interstellar dust?

mass-loss winds

expanding ejecta

of supernovae

of AGB stars

- abundant metal (metal : N > 5)
- low temperature (T < ~2000 K)
- high density (n > $\sim 10^6$ cm⁻³)
- huge amounts of dust grains (>10⁸ Msun) are detected in host galaxies of quasars at redshift z > 5
 - → 0.1 Msun of dust per SN is needed to explain such massive dust at high-z (e.g. Dwek et al. 2007)
- contribution of dust mass from AGB stars and SNe

n(AGB stars) / n(SNe) ~ 10-20

Mdust = 0.01-0.05 Msun per AGB (Zhukovska & Gail 2008) Mdust = 0.1-1.0 Msun per SN (e.g., Nozawa et al. 2003, 2007)

Dust Formation in the ejecta of SNe

1. Observations of Dust Formation in SNe (and SNRs)

1-1. Summary of observed dust mass in CCSNe

time after the explosion (yr)

Far-IR to sub-mm observations are essential for revealing the mass of dust grains produced in the ejecta of SNe

1-1. Summary of observed dust mass in CCSNe

time after the explosion (yr)

Far-IR to sub-mm observations are essential for revealing the mass of dust grains produced in the ejecta of SNe

1-2. Herschel detects cool dust in SN 1987A

1-3. Resolving cool dust in SN 87A with ALMA

1-4. Successful ALMA proposals for SN 1987A

011.0.00221.5			2011.0.00273.5				
PI	Ехес	Country	Institute	PI	Exec	Country	Institute
Nozaw. Takaya	EA	Japan	The University of Tokyo	Indebetouw. Remy	NA	United States	Virginia, University of
сон				COI			
Tanaka, Masachi	EA	Japan	The University of Tokyo	McCray, Richard	NA	United States	Colorado at Boulder. Univ of
Moriya, Takashi	EA	Japan	University of Tekyo	Matsuura, Mikako	EU	United Kingdom	London. University of
Minamidani. Tetsuhira	EA	Japan	Hokkaido University	Andjelic, Nilica	OTHER	Serbia	Belgrade, University of
Kozasa, Takashi	EA	Japan	Hokkaido University	Arbutina, Bojan	OTHER	Serbia	Belgrade, University of
				Baes, Maarten	EU	Belgium	Gherr: University
				Bolatto, Alberto	NA	United States	Maryland, University of
				Burrows, David	NA	United States	Pennsylvania State University
This	br	ODOS	al was ranked	Chevalier, Roger	NA	United States	Virginia, University of
	P · ·			Gaensler, Bryan	OTHER	Australia	Sydney, University of
in th	o h	idho	st priority II	Long, Knoz	NA	United States	Space Telescope Science Institute
		I'YI'E	St priority ::	Lundqvist. Peter	EU	Sweden	Stockholm University
				Meixner. Margaret	NA	United States	Space Telescope Science Institute
			V	Marcalde, Jon	EU	Spain	Valencia. University of
				Marti-Vidal, Ivan	EU	Germany	Max-Planck-Institute for Radio Astronomy
				OTSUKA, Masaaki	EA/NA	Taiwan	Academia Sinica
	Our proposal was			Sandstrom, Karin	EU	Germany	Max-Planck-Institute for Astronomy
				Sonneborn, George	NA	United States	National Aeronautics and Space Administration
	_			Staveley-Smith, Lister	OTHER	Australia	International Centre for Radio Astronomy Research
	n	otex	kecuted	van Leen, jacco	EU	United Kingdom	Keele University
				Urosevic, Dejan	OTHER	Serbia	Belgrade, University of
				Vlahakis, Catherine	a.	Chile	Chile, University of
Band 9 extended configuration							
				Dwek, ELi	NA	United States	National Aeronautics and Space Administration
- 🥊			· · · · · · · · · · · · · · · · · · ·	Bouchet, Patrice	EU	France	CEA Saclay

Lakicevic, Masa

Potter, Toby

EU

OTHER

Germany

Australia

European Southern Observatory

International Centre for Radio Astronomy Research

1-5. ALMA reveals dust formed in SN 1987A

1-6. Possible target: SNR 1E0102-72.3 in SMC

young (compact) supernova remnants in LMC/SMC !

• SNR 1E0102-72.3

- O-rich (Type lb?)
- age : ~1000 yr
- Mwarm ~ 10⁻³ Msun
- Mcool ~ ???

E0162

Stanimirovic+05

Gaetz+00

Cassiopeia A

- O-rich (Type IIb)
- age : 330 yr
- Mwarm < 10⁻² Msun
- Mcool ~ 0.07 Msun

Cas A model (Nozawa+10)

<u>1-7. SNR 1E0102-72.3 is too extended!</u>

1-8. Flux estimates necessary for detection

1-9. Summary of observations of SN dust

- ALMA confirmed the presence of huge amounts of newly formed dust in the ejecta of SN 1987A
 - → heavy elements (Si, Mg, Fe, C) are locked up in dust grains
 - → SNe are main production factories of dust grains
- It seems too hard to detect thermal emission from cool dust in any other SNe/SNRs with ALMA
 → young SNRs in LMC/SMC are too extended
- A part of dust grains formed in the SN ejecta will be destroyed by the reverse shocks

what fraction of dust grains can survive to be injected?

- → destruction efficiency depends on dust composition and size
- infrared to submm observations have few information on the the composition and size distribution of dust

Evolution of dust in SN remnants

2. Theoretical Studies on Dust Formation in SNe

2-1. Dust formation in primordial SNe

Nozawa+2003, ApJ, 598, 785

O Population III SNe model (Umeda & Nomoto 2002)

- SNe II : MZAMS = 13, 20, 25, 30 Msun (E_{51} =1)
- **PISNe** : MZAMS = 170 Msun (E_{51} =20), 200 Msun (E_{51} =28)

- nucleation and grain growth theory (Kozasa & Hasegawa 1987)
- no mixing of elements within the He-core
- complete formation of CO and SiO

2-2. Dust formed in Type II-P SNe

2-3. Size distribution of newly formed dust

- C, SiO2, and Fe grains have lognormal-like size distribution, while the other grains have power-law size distribution
- The composition and size distribution of dust formed are almost independent of types of supernova

average grain radius is smaller for PISNe than SNe II-P

2-4. Total mass of dust formed in the ejecta

- Total mass of dust is higher for a higher progenitor mass (MZAMS) SNe II : mdust = 0.1-1.5 Msun, mdust / mmetal = 0.2-0.3 PISNe : mdust = 10-30 Msun, mdust / mmetal = 0.3-0.4
- almost all Fe, Mg, and Si are locked up in dust grains, while most of C and O remain in the gas-phase (such as CO)
 → dust-to-metal mass ratio is not high for SNe II

2-5. Temperature and density of gas in SNRs

The temperature of the gas swept up by the shocks → 10⁶-10⁸ K ↓ Dust grains residing in the shocked hot gas are eroded by sputtering

2-6. Evolution of dust in SNRs

Nozawa+07, ApJ, 666, 955

Model : M_{pr} = 20 Msun (E₅₁=1) n_{H,0} = 1 cm⁻³

Dust grains in the He core collide with reverse shock at (3-13)x10³ yr

The evolution of dust heavily depends on the initial radius and composition

- a_{ini} = 0.01 μm (dotted lines) → completely destroyed
- a_{ini} = 0.1 μm (solid lines) → trapped in the shell
- a_{ini} = 1 μm (dashed lines) → injected into the ISM

2-7. Dust mass and size ejected from SN II-P

grain radius (μm)

2-8. Summary of dust production in SNe

- Various grain species can condense in the ejecta

 almost all Fe, Mg, and Si are locked up in grains
- The fate of newly formed dust within SNRs strongly depends on the initial radii and compositions
- The size distribution of dust surviving the destruction in SNRs is weighted to relatively large size (> 0.01 μm).
- The total mass of dust injected into the ISM decreases with increasing the ambient gas density

for $n_{H.0} = 0.1-1 \text{ cm}^{-3}$

SNe II-P → Mdust = 0.1-0.8 Msun

→ making significant contribution to dust budget