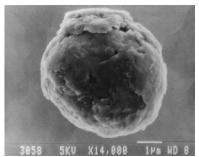
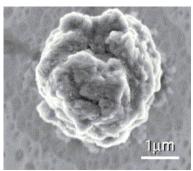
2015/10/28

超新星起源プレソーラーAl2O3粒子 の形成環境

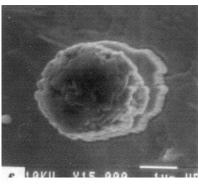
Probing the Physical Condition of Supernova Ejecta with the Measured Sizes of Presolar Al₂O₃ Grains (Nozawa, Wakita, Hasegawa, Kozasa 2015, ApJ, 811, L39)


<u>野沢 貴也(Takaya Nozawa)</u> 国立天文台 理論研究部

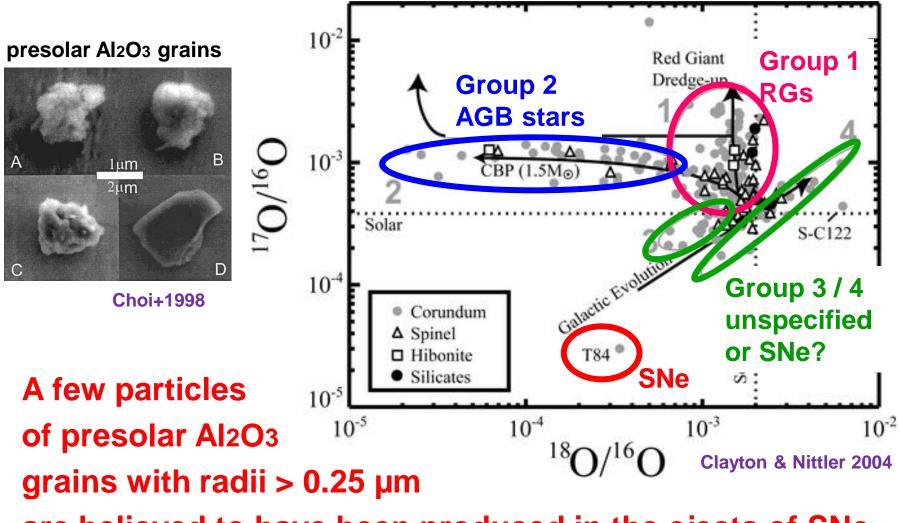
(National Astronomical Observatory of Japan)


1-1. Presolar grains

O Presolar grains


- discovered in meteorites
- showing peculiar isotopic compositions (highly different from the solar system's materials)
- thought to have originated in stars before the Sun was formed
 - → offering key information on nuclear processes in the parent stars red giants, AGB stars, supernovae, novae ...
- mineral composition graphite, nanodiamond, TiC, SiC, Si3N4, Al2O3, MgAl2O4, TiO2, Mg2SiO4, MgSiO3 ...

graphite (© Amari)


SiC (Nittler 2003)

Al2O3 (Nittler+1997)

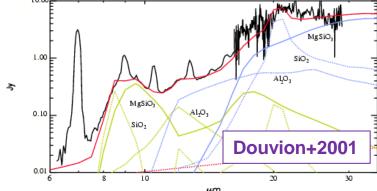
1-2. Isotopic composition of presolar oxides

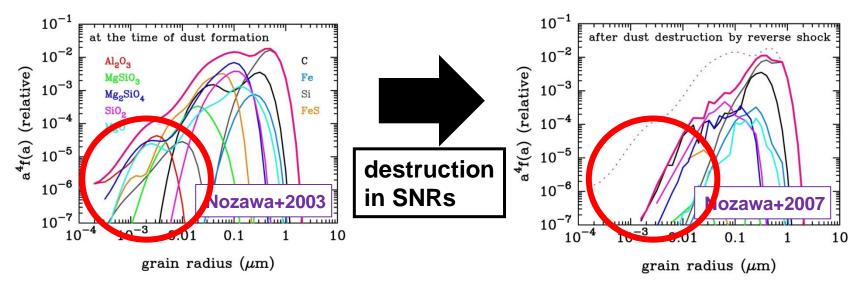
O Oxygen isotopic composition of presolar oxide grains

are believed to have been produced in the ejecta of SNe

1-3. Why we focus on presolar Al₂O₃ grains?

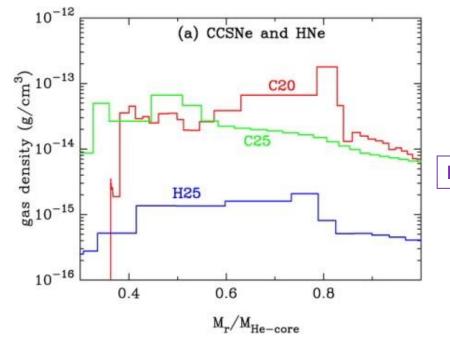
O Evidence for Al₂O₃ formation in SNe


- Infrared spectra of Cassiopeia A (Cas A) SNR
 - → Al2O3 is one of the main grain species (Douvion et al. 2001; Rho et al. 2008)

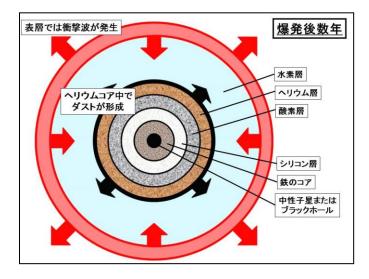

O Dust formation calculations

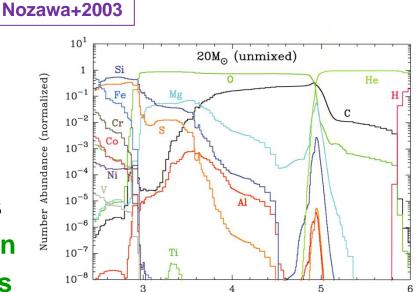
- the first condensate among oxide
 - → sizes of Al₂O₃ grains : < ~0.03 µm</p>

(e.g., Nozawa+2003; Todini & Ferrara+2001)



1-4. Why the calculated size of Al₂O₃ is small?


O One-dimension (1-D) SN models


- relatively smooth density profile

→ low number density of AI atoms

SN ejecta must be inhomogeneous
 dust formation would proceed in gases with a variety of densities

1-5. Aim of this talk

O Question

What is the formation condition of sub-µm-sized presolar Al₂O₃ grains identified as the SN-origin?

O Aim

We investigate the condensation of Al₂O₃ grains for wide ranges of gas density and cooling rate.

2-1. Supersaturation ratio

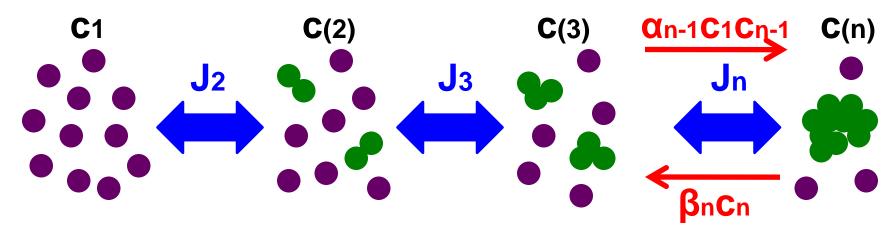
O Supersaturation ratio, S

\rightarrow ratio of partial pressure P1 to equilibrium partial pressure P⁰1

$$\ln S = \ln \left(\frac{p_1}{\dot{p}_1}\right) = -\frac{1}{kT} \left(\dot{g}_s - \dot{g}_1\right) + \ln \left(\frac{p_1}{p_0}\right)$$
For condensation of dust,

$$S = P1 / P^{0}1 > 1$$

$$\Rightarrow \ln S = \ln(P1 / P^{0}1) > 0$$


$$\ln S = \frac{A}{T} - B + \ln \left(\frac{c_1 kT}{p_0}\right)$$
Gaseous atom

$$Solid (bulk) \text{ material}$$
Total Sector 1

$$Solid (bulk) \text{ material}$$
Total Sector 2

InS is higher for lower T and higher c1

2-2. Concept of nucleation theory

master equations

$$\frac{dc_n}{dt} = J_n(t) - J_{n+1}(t) \quad \text{for } 2 \le n \le n_*,$$

$$J_n(t) = \alpha_{n-1}c_{n-1}c_1 - \beta_n c_n \text{ for } 2 \le n \le n_*,$$

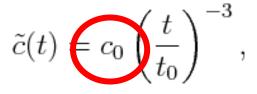
$$\alpha_n = \frac{s_n}{1+\delta_{1n}} \ 4\pi a_0^2 \ n^{\frac{2}{3}} \left(\frac{kT}{2\pi m_n}\right)^{\frac{1}{2}}, \qquad \beta_n = \alpha_{n-1} \frac{\mathring{c}_{n-1}}{\mathring{c}_n} \mathring{c}_1,$$

2-3. Dust formation calculations (Nozawa & Kozasa 2013)

O Master equations of cluster formation

$$\frac{dc_n}{dt} = J_n(t) - J_{n+1}(t) \quad \text{for } 2 \le n \le n_*,$$

where
$$J_n(t) = \alpha_{n-1}c_1 [c_{n-1} - c_n \exp(\gamma_n)].$$


n * = 100

O Equation of grain growth

$$\begin{aligned} \frac{da}{dt} &= s\Omega_0 \left(\frac{kT}{2\pi m_1}\right)^{\frac{1}{2}} c_1 \left(1 - \frac{1}{S}\right), \\ \frac{dV}{dt} &= s\Omega_0 \ 4\pi a^2 \left(\frac{kT}{2\pi m_1}\right)^{\frac{1}{2}} c_1 \left(1 - \frac{1}{S}\right), \end{aligned}$$
growth rate is independent of grain radius

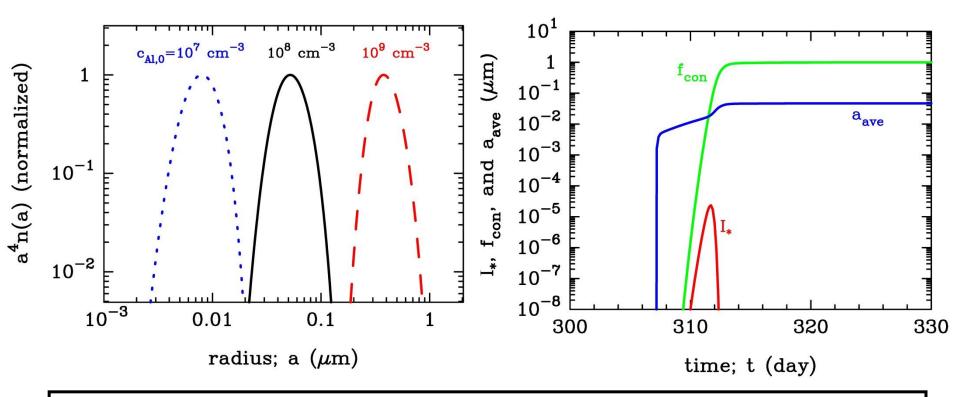
2-4. Model of calculations for Al₂O₃ formation

Time evolution of gas density (free expansion)

 $\tilde{c}(t) = c_0 \left(\frac{t}{t_0}\right)^{-3}$, t_0 : the time at which $\ln S = 0$ (S = 1) c_0: number density of AI atom at t_0

O Time evolution of gas temperature

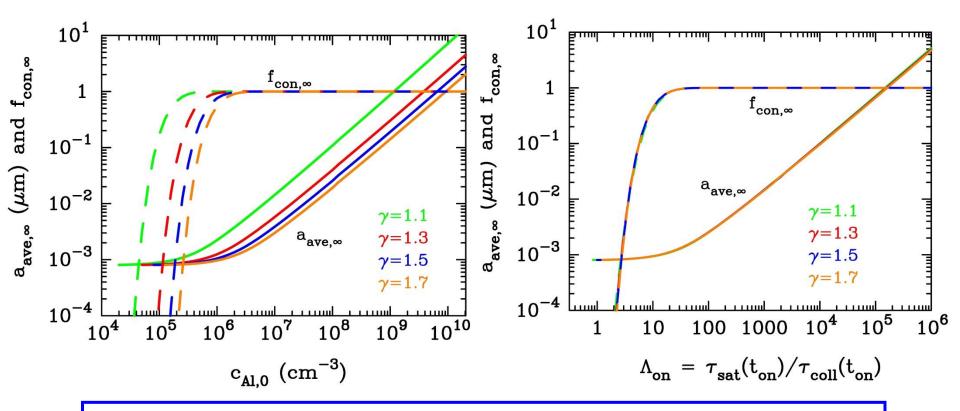
$$T(t) = T_0 \left(\frac{t}{t_0}\right)^{-3(\gamma-1)}$$
, T_0 : gas temperature at t_0 γ : adiabatic constant


Parameters:

- $C_{AI,0} = 10^3 10^{11} \text{ cm}^{-3}$ (initial number density of AI atoms)
- $-\gamma = 1.1-1.7$ (cooling rate)
- t_0 = 300 day (fixed)

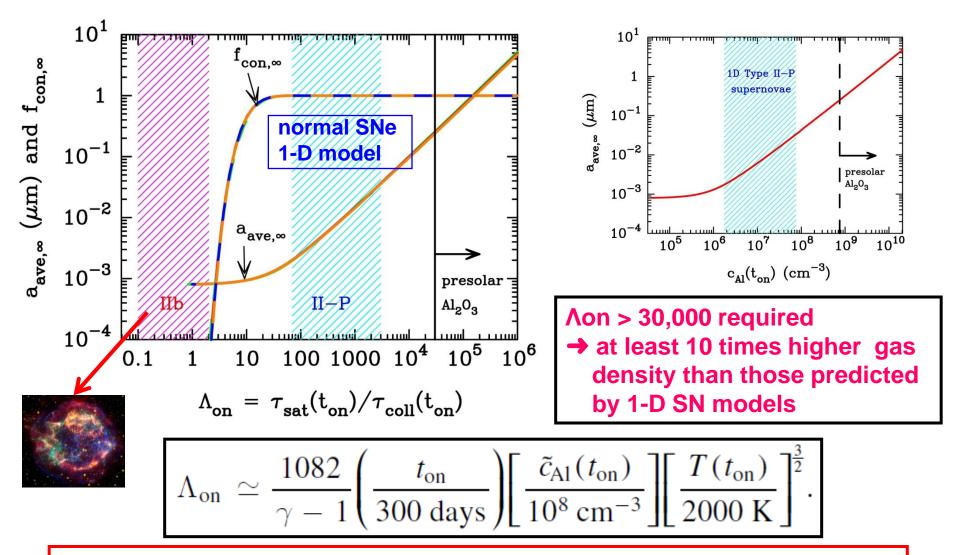
condensation efficiency, fcon :

a fraction of AI atoms that are locked up in dust grains ##

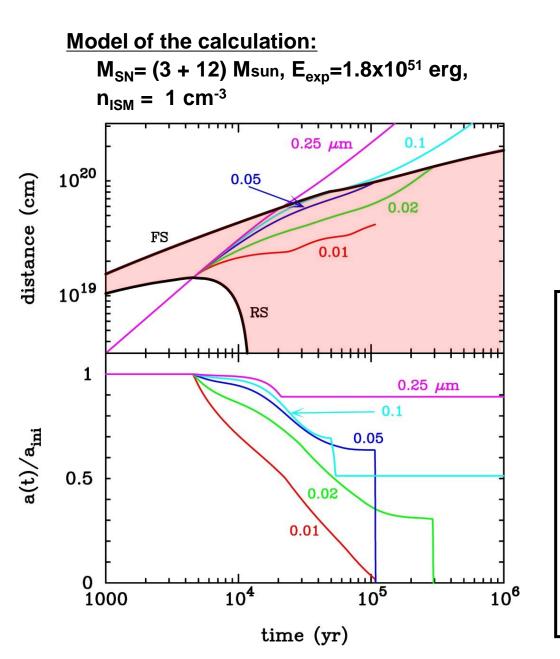

3-1. Size distribution of newly formed grains

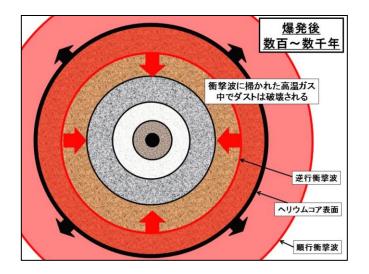
- Size distribution of newly formed grains is lognormal-like with a narrower width for a higher gas density
- Average grain radius increases with increasing c_{Al,0}
 A higher gas density leads to more efficient growth of grains

c_{AI,0} should be higher than $\sim 5x10^8$ cm⁻³ for the formation of AI2O3 grains with radii larger than $\sim 0.25 \mu m$ (diameter of 0.5 μm)


3-2. Scaling relation for fcon,∞ and aave,∞

<u> Λ on = Tsat/Tcoll</u>: ratio of supersaturation timescale to gas collision timescale at the onset time (ton) of dust formation <u> Λ on = Tsat/Tcoll ∝ Tcool Ngas</u>


fcon, ∞ and aave, ∞ are uniquely determined by Λon
 ## this is true for the formation of carbon and silicate grains


3-3. Formation condition of presolar Al₂O₃

Submicron-sized presolar Al₂O₃ grains identified as SN-origin were formed in dense clumps in the ejecta

3-4. Newly formed grains can survive in SNR?

Evolution of dust in SNRs depends on the initial radii

- a_{ini} < 0.01 µm
 → completely destroyed
- 0.02 μm < a_{ini} < 0.1 μm
 → eroded in dense shell

- a_{ini} > 0.1 μm

→ injected into the ISM

4. Summary of this talk

We investigate the formation of Al₂O₃ grains for a variety of densities and cooling rates of the gas.

- The average radius and condensation efficiency of newly formed Al₂O₃ grains are uniquely described by the non-dimensional quantity Λ_{on}.
- 2) Presolar Al₂O₃ grains with radii above 0.25 µm can be formed only in the gas with more than 10 times higher density than those estimated by 1-D SN models.
 → indicating the presence of dense clumps in the SN ejecta
- 3) The measured sizes of presolar grains are powerful probes for constraining the physical conditions and structure in which they formed.