2017/12/19

<u>野沢貴也(Takaya Nozawa)</u>

国立天文台 理論研究部

(National Astronomical Observatory of Japan)

Collaborators:

Shigeru Wakita (NAOJ), Yasuhiro Hasegawa (JPL), Sachiko Amari, Takashi Yoshida (U. of Tokyo), Kyoko, K. Tanaka, Yuki Kimura (Hokkaido Univ.), Hidekazu Tanaka (Tohoku Univ.)

1-1. Presolar grains

O Presolar grains

- discovered in primitive meteorites
- showing peculiar isotopic compositions (different from the solar system's materials)
- thought to have formed in stars before the Sun was formed
- → offering key information on

http://presolargrains.net/

- nuclear processes in the parent stars
- physical conditions in which they formed
- abundance (volume fraction): ~100-500 ppm (~0.1-0.5 %)
- mineral composition

graphite, SiC, TiC, Si3N4, Al2O3, MgAl2O4, Mg2SiO4, MgSiO3 ...

O Presolar SiC grains (~10 ppm) Mainstream 200 M26a-10000 XX 454-3 0 ΟY Solar ΔZ 8²⁹Si/²⁸Si (‰) to 1.35 Ma ♦ A+B Prev. Nova (?) 1000 -200 □ New Nova (? 14N/15N347-4 Solar -400100 151-4 1.25 -600 Mainstream XX 10 Prev. Nova (?) -800 □ New Nova (?) Solar Solar ♦ Nova Models Nittler & Hoppe 2005 -1000-1000 -500 500 1000 1500 0 10 100 1000 10000 δ^{30} Si/²⁸Si (‰) $^{12}C/^{13}C$

Nittler 2003

<u>O Type X SiC grains (~0.1 ppm, size: 0.1-20 μm)</u>

1-2. Presolar Type X SiC grains

- 12C/28Si rich, with excesses in 44Ca (44Ti), 49Ti (49V)
 - → originated from core-collapse supernovae

1-3. Long-lasting questions

O Fact

A fraction of presolar SiC grains is highly likely SN-origin

O Question

How do these SiC grains form in the ejecta of core-collapse supernovae?

Any theoretical studies have not yet realized the## formation of SiC grains in supernovae

2-1. Elemental abundances in the SN ejecta

2-2. Possible formation site of SiC grains in SNe

O Moderately energetic SNe

Ekin = $(3-5)x10^{51}$ erg (normal SNe : Ekin ~ $1x10^{51}$ erg)

explosive burning happens at the boundary between O-rich region and He-rich region

2-3. No formation of SiC in the calculations

O Condensation temperature

- C grains : Tcon = 1700-2200 K
- SiC grains: Tcon = 1300-1800 K
- ➔ In C/Si-rich gas, C grains first condense to use up the gasphase C atoms

O Formation path of grains

$$C_n + C \longrightarrow C_{n+1}$$

$$(SiC)_n + Si + Z \longrightarrow (SiC)_{n+1}$$

More efficient destruction of C grains (clusters)?

UV radiation, high-energy e, chemical reaction, ...

→ this may not do a good job

2-4. Formation of SiC grains via molecules

O Previous works

$$C_n + C \longrightarrow C_{n+1}$$

 $(SiC)_n + Si + C \longrightarrow (SiC)_{n+1}$

→ accretion of Si/C atoms

rate coefficients of radiative association of molecules ki,j

$$\frac{dc_k^{\text{mol}}}{dt} = k_{ij}(T)c_ic_j$$

<u>O This work</u>

- accretion of SiC molecules $(SiC)_n \quad SiC \rightarrow (SiC)_{n+1}$

- coagulation

 $(SiC)_m + (SiC)_n \longrightarrow (SiC)_{m+n}$

3-1. Formation of SiC molecules

3-2. Equation of dust formation

O Master equations of dust growth

$$\frac{dc_n}{dt} = \frac{1}{2} \sum_{i=1}^{n-1} K_{i,n-i}(T) c_i \left(c_{n-i} - c_n e^{\gamma_{i,n-1}} \right) - c_n \sum_{l=1}^{n_{\max}} K_{n,l}(T) \left(c_l - c_{n+l} e^{\gamma_{l,n}} \right) K_{i,j}(T) = \alpha_s \pi (a_i + a_j)^2 \left(\frac{8kT}{\pi m_{i,j}} \right)^{\frac{1}{2}} \gamma_{i,n-i}(T) = \frac{4\pi a_0^2 \sigma}{kT} \left[(n-1)^{\frac{2}{3}} - (n-i-1)^{\frac{2}{3}} - (i-1)^{\frac{2}{3}} \right] - \ln S_i$$

taking account of nucleation and grain growth through gas accretion and coagulation between grains simultaneously!

3-3. Can SiC grains form in the SN ejecta?

Yes, the formation of SiC grains is possible !

3-4. Formation process of SiC grains

O Formation of SiC grains is possible !!

- Condensation temperature is higher for higher gas density
- Dust growth proceeds on a short timescale through rapid accretion of molecules
- Coagulation makes the average radius by about a factor of 2

3-5. Size distribution of SiC grains formed

O Timescale of collision

$$\tau_{\rm coll}^{-1} = \pi S_{i,j} \langle v \rangle c_i$$

Timescale of gas accretion onto 0.001um-sized grains

$$\tau_{\rm acc} \simeq 0.028 \,\, {\rm day} \,\, \left(\frac{a_{ij}}{0.001 \,\,\mu{\rm m}}\right)^{-2} \left(\frac{T}{1500 \,\,{\rm K}}\right)^{-\frac{1}{2}} \left(\frac{m_{ij}}{40m_{\rm H}}\right)^{\frac{1}{2}} \\ \left(\frac{c_{\rm tot}}{3 \times 10^7 \,\,{\rm cm}^{-3}}\right)^{-1} \left(\frac{A_i}{5 \times 10^{-3}}\right)^{-1}$$

Timescale of coagulation between 0.001um-sized grains

$$\tau_{\rm coag} \simeq \tau_{\rm acc} \left(\frac{1}{4\sqrt{2}}\right) (10^3)^{\frac{1}{2}} 10^3 \simeq 155 \text{ day}$$

Timescale of gas expansion

$$\tau_{\rm exp} = \left(\frac{1}{c} \left| \frac{dc}{dt} \right| \right)^{-1} = \frac{t}{3} \simeq 220 \quad \text{day}$$

3-6. Size distribution of SiC grains formed

- Radius of newly formed grains is larger for higher gas density
- In the density range considered in this study, grain radius is not large enough to reproduce ones observed in presolar SiC grains

4. Summary of this talk

We investigate the formation of SiC grains in the ejecta of supernovae, self-consistently treating

- formation of SiC molecules
- growth of SiC grains via accretion of molecules
- growth of SiC grains via grain-grain coagulation

We have realized, for the first time, the formation of SiC grains (but with small radii of < 0.1 µm...)

calculations for more dense cases needed to
achieve the formation of SiC grains as large as
presolar Type-X SiC grains (a > 0.1 µm)