2018/08/13

Formation of SiC grains in the ejecta of core-collapse supernovae

Takaya Nozawa

(National Astronomical Observatory of Japan)

Collaborators:

Sachiko Amari, Takashi Yoshida (U. of Tokyo), Shigeru Wakita (ELSI), Yasuhiro Hasegawa (JPL), Kyoko, K. Tanaka, Hidekazu Tanaka (Tohoku Univ.), Yuki Kimura (Hokkaido Univ.)

1-1. Presolar grains

O Presolar grains

- discovered in primitive meteorites
- showing peculiar isotopic compositions (different from the solar system's materials)
- thought to have formed in stars before the Sun was formed
- → offering key information on

http://presolargrains.net/

- nuclear processes in the parent stars
- physical conditions in which they formed
- abundance (volume fraction): ~100-500 ppm (~0.1-0.5 %)
- mineral composition

graphite, SiC, TiC, Si3N4, Al2O3, MgAl2O4, Mg2SiO4, MgSiO3 ...

O Presolar SiC grains (~10 ppm) Mainstream 200 M26a-10000 ×Х 454-3 @ ΟY Solar ΔZ 8²⁹Si/²⁸Si (‰) ♦ A+B to 1.35 Ma Prev. Nova (?) 1000 -200 □ New Nova (? 14N/15N347-4 Solar -400 100 151-4 1.25 -600 Mainstream XX 10 Prev. Nova (?) -800 □ New Nova (?) Solar Solar Nova Models Nittler & Hoppe 2005 -1000-1000 -500 500 1000 1500 0 10 1000 10000 100 δ^{30} Si/²⁸Si (‰) $^{12}C/^{13}C$

Nittler 2003

<u>O Type X SiC grains (~0.1 ppm, size: 0.1-20 µm)</u>

- 12C and 28Si rich, with excesses in 44Ca (44Ti), 49Ti (49V)
 - → originated from core-collapse supernovae

1-2. Presolar Type X SiC grains

1-3. Long-lasting questions

O Fact

A fraction of presolar SiC grains is highly likely SN-origin

O Question

How do these SiC grains form in the ejecta of core-collapse supernovae?

Any theoretical studies have not yet realized the## formation of SiC grains in supernovae

2-1. Elemental abundances in the SN ejecta

2-2. Possible formation site of SiC grains in SNe

O Moderately energetic SNe

Ekin = $(3-5)x10^{51}$ erg (normal SNe : Ekin ~ $1x10^{51}$ erg)

explosive burning happens at the boundary between O-rich region and He-rich region

- producing 12C-rich, 28Si-rich, (44Ti-rich) region
- ## 3(4He) → 12C

12C + n(4He) → α-elements

2-3. No formation of SiC in the calculations

O Condensation temperature

- C grains : Tcon = 1700-2200 K
- SiC grains: Tcon = 1300-1800 K
- ➔ In C/Si-rich gas, C grains first condense to use up the gasphase C atoms

O Formation path of grains

$$C_n + C \longrightarrow C_{n+1}$$

$$(\operatorname{SiC})_n + \operatorname{Si} + \mathbb{Z} \longrightarrow (\operatorname{SiC})_{n+1}$$

More efficient destruction of C grains (clusters)?

UV radiation, high-energy e, chemical reaction, ...

→ this may not do a good job

2-4. Formation of SiC grains via molecules

O Previous works

$$C_n + C \longrightarrow C_{n+1}$$

 $(SiC)_n + Si + C \longrightarrow (SiC)_{n+1}$

rate coefficients of radiative association of molecules ki,j

$$\frac{dc_k^{\text{mol}}}{dt} = k_{ij}(T)c_ic_j$$

accretion of Si/C atoms

<u>O This work</u>

- accretion of SiC molecules $(SiC)_n \quad SiC \rightarrow (SiC)_{n+1}$

- coagulation

 $(SiC)_m + (SiC)_n \longrightarrow (SiC)_{m+n}$

3-1. Formation of SiC molecules

	Element	# abundance
	Не	0.3
	С	0.3
	0	0.001
	Ne	0.001
	Mg	0.002
	Si	0.2
	S	0.19
	Ar	0.006
^		
10 ⁰		
10 ⁻¹		
Mass Fraction 10-3 10-3 10-4 10-2		H-1 He-4
5 Fract		- C-12 - O-16 - Ne-20
W 10 ⁻⁵	Hardt	Mg-24 Si-28 S-32
10 ⁻⁶		→ Ar-36 → Ca-40 → Ti-44
10 ⁻⁷	8 2.9	0 3.1 3.2 M/M _©

Pignatari+2013

3-2. Equation of dust formation

O Master equations of dust growth

$$\frac{dc_n}{dt} = \frac{1}{2} \sum_{i=1}^{n-1} K_{i,n-i}(T) c_i \left(c_{n-i} - c_n e^{\gamma_{i,n-1}} \right) - c_n \sum_{l=1}^{n_{\max}} K_{n,l}(T) \left(c_l - c_{n+l} e^{\gamma_{l,n}} \right) K_{i,j}(T) = \alpha_s \pi (a_i + a_j)^2 \left(\frac{8kT}{\pi m_{i,j}} \right)^{\frac{1}{2}} \gamma_{i,n-i}(T) = \frac{4\pi a_0^2 \sigma}{kT} \left[(n-1)^{\frac{2}{3}} - (n-i-1)^{\frac{2}{3}} - (i-1)^{\frac{2}{3}} \right] - \ln S_i$$

taking account of nucleation and grain growth through gas accretion and coagulation between grains simultaneously!

3-3. Can SiC grains form in the SN ejecta?

Yes, the formation of SiC grains is possible !

3-4. Size distribution of SiC grains formed

- Radius of newly formed grains is larger for higher gas density
- For the gas densities considered in this study, grain radii cannot reach ones (> 0.1 μ m) observed in presolar SiC grains

3-5. Dependence of grain size on density

- Radius of newly formed grains is larger for shorter t_cool
- Radius and mass of SiC grains are lower than those of C grains by factors of ~5 and ~10, respectively.

4. Summary of this talk

We investigate the formation of SiC grains in the ejecta of supernovae, self-consistently treating

- formation of SiC molecules
- growth of SiC grains via accretion of molecules
- growth of SiC grains via grain-grain coagulation

We have realized, for the first time, the formation of SiC grains in the ejecta of supernovae

→ Formation of large presolar Type-X SiC grains above 0.1 µm is still difficult

Any idea, please !!