2019/02/06

Formation of dust and molecules in supernovae

Takaya Nozawa

(National Astronomical Observatory of Japan)

SN 1987A

Cassiopeia A

1-1. Introduction

Question : Can supernovae (SNe) produce molecules and dust grains?

2-1. Thermal emission from dust in SN 1987A

2-2. CO and SiO detection in SN 1987A

SN II-pec 1987A, Wooden+1993

2-3. CO and SiO masses in SN 1987A

Event	SN type	Epoch of last CO non-detection	Epoch of first CO detection	References
CO detections				
SN 1987A	IIP Pec	112 d	192 d	1
SN 1995ad	IIP		105 d	2
SN 1998S	IIn	44 d	109 d	3
SN 1999dl	IIP		152 d	4
SN 1999em	IIP	118 d	178 d	4,5
SN 1999gi	IIP	74 d	126 d	5
SN 2000ew	Ic	39 d	97 d	6,7
Non-detections				
SN 1990W	Ic	90 d		8
SN 1995V	IIP	84 d		9
SN 2001B	Ib	60 d		7

Table 1. CO detections in NIR spectra of SNe.

Gerardy+2002, see also Banerjee+2018

- CO emission is seen in various types of CCSNe from ~50 day
- CO/SiO masses in SN 1987A Mco > ~4x10⁻³ Msun MSiO > ~7x10⁻⁴ Msun

2-4. Dust mass in Cassiopeia A (Cas A) SNR

O Estimated mass of dust in Cas A

warm/hot dust (80-300K)

(3-7)x10⁻³ Msun (*IRAS*, Dwek et al. 1987) ~7.7x10⁻⁵ Msun (*ISO*, Arendt et al. 1999) 0.02-0.054 Msun (*Spitzer*, Rho+2008)

→ Mdust = 10⁻⁴-10⁻² Msun consistent with >10⁻⁴ Msun in SN 1987A

Dwek+1987, IRAS

Arendt+1999, ISO

Wavelength (µm)

3-1. Dust formation in Type IIb SN

O SN IIb model (SN1993J-like model)

- Meje = 2.94 Msun MZAMS = 18 Msun MH-env = 0.08 Msun
- E₅₁ = 1
- M(⁵⁶Ni) = 0.07 Msun

3-2. Equations for dust formation calculations

Nucleation rate

$$J_s(t) = \alpha_s \Omega \left(\frac{2\sigma}{\pi m_1}\right)^{\frac{1}{2}} \Pi c_1^2(t) \exp\left[-\frac{4}{27} \frac{\mu^3}{\left(\ln S\right)^2}\right]$$

Grain growth

$$\frac{da}{dt} = s\Omega_0 \left(\frac{kT}{2\pi m_1}\right)^{\frac{1}{2}} c_1 \left(1 - \frac{1}{S}\right),$$

Growth rate of dust is independent of its size

Mass conservation
$$c_{10} - c_1 = \int_{t_0}^t J_{n_*}(t') \frac{a^3(t,t')}{a_0^3} dt'$$

Formation rate of stable

nuclei per volume

3-3. Results of dust formation calculations

3-4. Comparison with IR observations of Cas A

Barlow+2011

4-1. Herschel detects cool dust in SN 1987A

4-2. Resolving cool dust in SN 87A with ALMA

4-3. Successful ALMA proposals for SN 1987A

011.0.00221.5					2011.0.00273.5			
PI	Ехес	Country	Institute		PI	Exec	Country	Institute
Nozawa Takaya	EA	Japan	The University of Tokyo		Indebetouw. Remy	NA	United States	Virginia, University of
CON					COL			
Fanaka, Masaa	EA.	Japan	The University of Tokyo		McCray, Richard	NA	United States	Colorado at Boulder. Univ of
Moriya, Takashi	EA.	Japan	University of Tekyo		Matsuura, Mikako	EU	United Kingdom	London. University of
Minamidani. Tetsuhira	EA	Japan	Hokkaido University		Andjelic, Nilica	OTHER	Serbla	Belgrade, University of
Kozasa, Takashi	EA	Japan	Hokkaido University		Arbutina, Bojan	OTHER	Serbia	Belgrade, University of
					Baes, Maarten	EU	Belgium	Gherr: University
	ur n	prop ot ex	osal was ecuted			N RA		
					Urosevic, Dejan Vlahakis, Catherine Zo	OTHER CL	Serbia Chile	Belgrade, University of Chile, University of
Band 9 extended configuration		n	Band 3, 6, 7, 9 compact configuration					
					Wesson, Noger Dwek, ELi Bouchet, Patrice Lakicevic, Mesa Pottar, Toby	eu Na Eu Eu Other	United Kingdom United States France Germany Australia	London, University of National Aeronautics and Space Administration CEA Saclay European Southern Observatory International Centre for Radio Astronomy Research

4-4. ALMA reveals dust formed in SN 1987A

4-5. CO detection in SN 1987A with ALMA

blue: Hα green: [Sil]+[Fell] (1.64 μm) red: CO(2-1)

- CO properties Vco ~ 2200 km/s Mco > 0.01 Msun Tco > 14 K

- For ALMA full operation, 3D maps of CO and SiO

4-6. 3D-structure of CO and SiO emission

Right Ascension (J2000)

4-7. CO detection in Cassiopeia A SNR

- Mco ~ 6x10⁻⁷ -x10⁻⁶ Msun
- Tco = 400 K and 2400 K
- knot density: 10⁶⁻⁷ /cm³

CO was not destroyed by the shock or was reformed recently

5-1. Observed dust mass in CC-SNe/SNRs

Dust mass formed in the ejecta is dominated by cold dust

5-2. Questions for dust formation in SNe

(1) What fraction of newly formed dust can survive the destruction by reverse shock?

- theory: ~5-50 % (Mdust ~ 0.01-0.1 Msun per CCSN)
- obs.: very hard to detect dust from more extended SNRs

(2) When do the majority of grains form?

- theory (1-3 yr) vs obs (~10-20 yr)
- JWST will not be able to resolve this question
- ALMA can disclose it if CCSNe happen in MW and L/SMC

(3) Can dust (and molecules) form in SNe Ia?

6-1. No dust in the ejecta of Type Ia SNRs

Herschel detected no cool dust in Galactic Type Ia SNRs, Kepler and Tycho (Mdust < ~10⁻³ Msun)

6-2. No evidence for dust formation in SNe Ia

6-3. MIR Observations of SN 2014J with Subaru

T. Nozawa et al. unpublished

O No detection of SN 2014J with Subaru/COMICS

- No massive amounts of dust grains formed in the ejecta (Mdust < ~0.1 Msun)
- No massive circumstellar dust grains around SN 2014J

6-4. Suppressed formation of dust in SNe Ia?

O SNe la are harsher than CCSNe?

M(56Ni) ~ 0.6 Msun → 10 times higher than that of CCSNe dust and molecules can be destroyed by energetic photons and electrons prevailing in the ejecta

6-5. Can ALMA detect dust in SNe Ia?

- extragalactic SNe are too far (D > 1 Mpc) to detect the thermal emission from cool dust in ejecta with ALMA
- young Galactic SNRs are too extended (θ > 1 arcmin) for good spatial resolution of ALMA (~0.1 arcsec)

young (compact) SNRs in LMC/SMC !

<u>O SNR 0509-67.5</u>

- Type la SNe
- age : ~400 yr
- in LMC (d=50 kpc)

Borkowski+2006

6-6. SNR 0509-67.5 is too extended!

SN 1987A

6-7. Fe grains formed in SNR 0509?

optical image of SNR 0509-67.5 in LMC

lights scattered by Fe grains formed in the ejecta

Schaefer & Pagnotta+2012

6-8. Expected SEDs of Fe grain emission

If the source is detected, this is the first detection of the formation of massive dust grains in SNe Ia !

6-9. ALMA Observation of SNR 0509-67.5

7-1. Next challenge to SNe Ia?

Aiming at first detection of molecules in SNe Ia

7-2. Explosion mechanism of SNe Ia

Detection of molecules can gives insight into

- explosion mechanism of SNe la
- physical condition of the expanding ejecta

7-3. Summary of this talk

- CCSNe are production factories of dust and molecules

- → Theoretical calculations predicts 0.1-1 Msun of dust formed
- → ALMA and Herschel confirmed the presence of a large amount of dust in the ejecta of CC-SNe/SNRs
- Still unclear what fraction of dust grains can survive the destruction in reverse shocks and be injected into the ISM
- hard to detect thermal emission from cool dust in any SNe/SNRs other than SN 1987A with ALMA
 - → even the youngest SNR in LMC/SMC are too extended
 - → if SNe happen in MW or L/SMC, we see cool dust with ALMA
- There is no evidence for the formation of dust and molecules in SNe Ia