Star Formation Newsletter #294 1-5

麻生 有佑 (ASIAA)

Chemical Segregation in Hot Cores With Disk Candidates

An investigation with ALMA

V. Allen^{1,2}, F. F. S. van der Tak^{1,2}, Á. Sánchez-Monge³, R. Cesaroni⁴, and M. T. Beltrán⁴

- > 大質量星は銀河の化学進化を駆動。
- ▶ Hot core: 形成初期の化学リッチな段階。 >10⁷ cm⁻³, ~300 K, <0.05 pc, 10⁵ yr.
- ➤ 円盤候補もあるが輝線(COM)の起源が不明。

Continuum Peak	Right Ascension	Declination	Size ("')a	$S_{\nu} (Jy)^b$	$T_{\rm kin} ({\rm K})^c$	$N({\rm H_2})~({\rm cm^{-2}})^d$	Mass (M _☉) ^e
G35.20 A	18:58:12.948	+01:40:37.419	0.58	0.65	285	2.4×10^{25}	13.0
G35.20 B1	18:58:13.030	+01:40:35.886	0.61	0.19	160	6.4×10^{24}	3.8
G35.20 B2	18:58:13.013	+01:40:36.649	0.65	0.12	120	3.3×10^{24}	2.2
G35.20 B3	18:58:13.057	+01:40:35.442	0.58	0.08	300	2.5×10^{24}	1.4
G35.03 A	18:54:00.645	+02:01:19.235	0.49	0.21	275	1.1×10^{25}	4.4

- ➤ 円盤候補 G35.20 (2.2 kpc, 3e4 Lo), G35.03 (2.32 kpc, 1.2e4 Lo)
- ➤ ALMA Cycle 0, 350 GHz, 400以上の輝線。

- ➤ CH₃OHはCOMを作る高温ガスをダストより反映する。
- ▶ Bの中ではB3が最もリッチ。
- ➤ G35.20とG35.03で桁は同じ。

V. Allen^{1,2}, F. F. S. van der Tak^{1,2}, Á. Sánchez-Monge³, R. Cesaroni⁴, and M. T. Beltrán⁴

- ➤ Bは軸対称円盤ではなさそう。
- ▶ 1000 AU以下の化学セグリゲーションを初検出。
 - 1. 円盤分裂, 2. 連星, 3. disrupted disk

・重水素比が大小質量より高い。 →COが凍結している若い段階。 ► HNCOとNH₂CHOは空間速度分布が一致。
→HNCOを経てNH₂CHO。

- ➤ 過去研究のN系とO系の違い。
- ▶ Orion KL: 近傍の別の星へ降着(エンカウント?)。G35.20に兆候なし。
- ▶ W3: 片方がHII領域、もう片方が分子流付きYSO。~7000 AUスケール だが可能性あり。
- ➤ AFGL2591: S, Nが中心星からのUVで光解離。G35.20ではNが外側。

High-mass Star Formation in the Outer Scutum–Centaurus Arm

W. P. Armentrout^{1,2}, L. D. Anderson^{1,2,3}, Dana S. Balser⁴, T. M. Bania⁵, T. M. Dame⁶, and Trey V. Wenger^{4,7}

- ▶ HII領域は大質量星~zero ageなのでまさに今の情報。
- ▶ 銀河面第1象限は歪んでいる(~4°; OSC Arm)ので遠くて も見える。しかし、銀河面サーベイから漏れる。
- ▶ OSC Armの根本はバーから伸びており、OSCより外に大質量星なし。

- ➤ WISEカタログ、4000/6000が電波連続波なし、radio quiet。
- > 20° < | < 70° $b = 0.375 + 0.075 \times \ell$. $V_{LSR} = -1.6 \, \mathrm{km \, s^{-1} \, deg^{-1}} \times \ell$.
- > VLAとGreen Bank Telescope。制動放射でHII領域を同定。θ~10", ΔV~0.75 kms⁻¹。

Observation Summary

Facility	# Sources	t _{int} (min)	ν (GHz)	Transition
VLA	65	4	8–10	Continuum $H87\alpha - H93\alpha$
GBT	75	6–36	22.2351 23.6945 23.7226 23.8701	$H_2O \ 6(1, 6) \rightarrow 5(2, 3)$ $NH_3 \ (J, K) = (1, 1)$ $NH_3 \ (J, K) = (2, 2)$ $NH_3 \ (J, K) = (3, 3)$

) 連続波
$$\rightarrow$$
 N_{Ly} \rightarrow SpT (モデル)
$$N_{Ly} = 6.3 \times 10^{52} \left[\frac{T_e}{10^4 \text{ K}} \right]^{-0.45} \left[\frac{\nu}{\text{GHz}} \right]^{0.1}$$

$$L_{\nu} = 4\pi \ 10^{-26} \left[\frac{D}{\text{m}} \right]^2 \left[\frac{S_{\text{int}}}{\text{Jy}} \right] [\text{W Hz}^{-1}].$$

$$\times \left[\frac{L_{\nu}}{10^{20} \text{ W Hz}^{-1}} \right] [\text{s}^{-1}].$$

銀河回転モデルからアンモニアの力学距離。

G026.417+01.683 3色WISE, コントアVLA 126 arcsec

結果の例。

High-mass Star Formation in the Outer Scutum-Centaurus Arm

の続き

W. P. Armentrout^{1,2}, L. D. Anderson^{1,2,3}, Dana S. Balser⁴, T. M. Bania⁵, T. M. Dame⁶, and Trey V. Wenger^{4,7}

Table	5
Derived Region	Parameters

				Brand						
Name	$V_{\rm LSR}$ (km s ⁻¹)	R _{Gal} (kpc)	d _⊙ (kpc)	$\frac{\operatorname{Log_{10}}(N_{\mathrm{Ly}})^{\mathrm{a}}}{(\mathrm{s}^{-1})}$	Spectral ^b Type	R _{Gal} (kpc)	d _⊙ (kpc)	$\frac{\operatorname{Log_{10}(N_{Ly})^{a}}}{(s^{-1})}$	Spectral ^b Type	Note ^c
G026.417+01.683	42.55	5.93	3.05/12.18	45.77/46.98	B1.5/B0.5	6.57	2.23/12.99	45.50/47.03	B1.5/B0	
G028.320+01.243	-44.00	15.25	22.18	47.97	O8.5	16.43	23.41	48.02	08.5 N E	₩øsc
G029.138+02.218	34.71	6.44	2.48/12.36			7.15	1.59/13.26			
G033.007+01.150	-57.60	17.05	23.54	48.18	О8	18.31	24.84	48.23	O8	W, OSC
G034.133+00.471	35.65	6.63	2.44/11.63			7.36	1.44/12.64			
G037.419+01.513	42.13	6.49	2.83/10.68	45.77/46.92	B1.5/B0.5	7.20	1.73/11.78	45.34/47.01	B1.5/B0	
G039.183-01.422	-51.00	13.88	19.39	48.28	O8	15.01	20.61	48.33	07.5	W, OSC
G039.536+00.872	-38.50	12.05	17.32	47.33	B0	13.10	18.49	47.39	В0	
G039.801+01.984	29.31	7.09	1.99/11.07	44.91/46.40	B1.5/B1	7.86	0.85/12.21	44.18/46.48	B1.5/B1	
G040.954+02.473	-52.50	13.82	19.07			14.95	20.29		NE	₩øsc
G048.589+01.125	-34.25	10.99	14.57	46.93	B0.5	11.99	15.78	47.00	B0.5	
G050.900+01.055	-59.00	13.40	17.03	47.78	O9	14.52	18.30	47.84	O9	
G053.580+01.387	39.44	7.00	3.56/6.53			7.77	1.37/8.72			
G054.093+01.748	-85.30	16.99	20.52	48.06	O8.5	18.25	21.89	48.11	O8	W, OSC
G054.490+01.579	-39.94	11.22	13.77	47.83	O9	12.23	15.03	47.91	O8.5	
G055.114+02.422	-76.10	15.26	18.43	49.28	O4	16.44	19.75	49.35	O4	W, OSC
G060.592+01.572	-49.40	11.76	13.31	48.21	О8	12.80	14.62	48.29	O7.5	W
G064.151+01.282	-55.93	12.18	13.19	•••		13.24	14.52	•••		
G066.607+02.060	-69.10	13.34	14.20			14.45	15.54			

HI emission mom 0

+: 連続波なし x: 今回観測され なかったHII

▶ 60%で連続波、20%で分子輝線。

→外縁は金属量と星形成率が小さいため。

▶ 04までいることがわかった。

➤ WISE radio quietで60%も連続波を検出。 →他の象限でも受かるだろう。

HI emission (Brand model)

+: WISE HII

x: 既知HII

+: 連続波なし

点線: 距離が2解

Distance from Galactic Center (kpc)

First Millimeter Detection of the Disk around a Young, Isolated, Planetary-mass Object

Amelia Bayo¹, Viki Joergens², Yao Liu^{2,3}, Robert Brauer⁴, Johan Olofsson^{1,2}, Javier Arancibia¹, Paola Pinilla⁵, Sebastian Wolf⁴, Jan Philipp Ruge⁴, Thomas Henning², Antonella Natta^{6,7}, Katharine G. Johnston⁸, Mickael Bonnefoy⁹, Henrik Beuther², and Gael Chauvin^{9,10}

- > substellarの形成過程は不明。星形成物理量とM*の関係が基本。
- ▶ BDは最近やられている。小さいスペクトル指数はダスト成長を示唆。 →substellarだとradial driftで成長できないという説と反対。
- > OTS44: Cha I, M9.5, M_{*}=6-17 M_J,
- > Spitzer/Herschelで円盤、VLTでPa β, 8e-12 Mo yr-1,
- ▶ 赤外へのモデルはM_{dust}=0.17M_F→ミリ波が必要。
- > ALMA Cycle 3, 224, 226, 240, 242 GHz, 1.6", 9.8 μJy/beam_o

$$M_{\rm dust} = \frac{F_{\nu} \times d^2}{\kappa_{\rm tv} \times B_{\nu}(T_{
m dust})}, \quad T_{
m dust} = 25 \times (L_*/L_{\odot})^{1/4} \, {
m K}. \quad T_{
m dust} = 22 \times (L_*/L_{\odot})^{0.16} \, {
m K},$$

- κ=2.3 cm² g⁻¹ (β=0.4)、温度は光度でスケールすると5.5 K, 星間輻射は7.5 K, スケール修正版(van der Plas+'16)だと 8.4 K, 小質量星の典型は20 K, それぞれ
- \rightarrow M_{dust}=0.07, 0.27, 0.33, 0.63 M_E $_{\circ}$
- ➤ 大きい側のM_{dust}-M_{*}関係に矛盾しない。
- ➤ しかし、ダストの性質に依存するのでBand 3でも観測する。

A Tale of Three Cities

OmegaCAM discovers multiple sequences in the color-magnitude diagram of the Orion Nebula Cluster

G. Beccari¹, M.G. Petr-Gotzens¹, H.M.J. Boffin¹, M. Romaniello^{1, 12}, D. Fedele², G. Carraro³, G. De Marchi⁴, W.-J. de Wit⁵, J.E. Drew⁶, V.M. Kalari⁷, C.F. Manara⁴, E.L. Martin⁸, S. Mieske⁵, N. Panagia⁹, L. Testi¹, J.S. Vink¹⁰, J.R. Walsh¹, and N.J. Wright^{6, 11}

- ▶ 星団の年齢幅は連続的な星形成か、降着の違いか。
- ➤ ONCは年齢幅~3 Myr。距離414 pc。
- \succ チリの2.6 m VST, FoV=1 deg², 0.21"pix⁻¹, r, i bandとH α 。
- \triangleright Accretion Discs in H α with OmegaCAM survey.
- ➤ 色等級図に3つPMSsを検出、Hartigans' dip test。 赤化ベクトルに沿うので赤化のせいではない。

- ▶ 空間分布は青がまばらに見える。
- Minimal Spanning Tree: 中心は同じでなくて良いが、 completenessは同じと仮定。
- MST_{blue}/MST_{green}=1.16, 5σレベルで青の方がまばら。

A Tale of Three Cities

OmegaCAM discovers multiple sequences in the color-magnitude diagram of the Orion Nebula Cluster

の続き

G. Beccari¹, M.G. Petr-Gotzens¹, H.M.J. Boffin¹, M. Romaniello^{1, 12}, D. Fedele², G. Carraro³, G. De Marchi⁴, W.-J. de Wit⁵, J.E. Drew⁶, V.M. Kalari⁷, C.F. Manara⁴, E.L. Martin⁸, S. Mieske⁵, N. Panagia⁹, L. Testi¹, J.S. Vink¹⁰, J.R. Walsh¹, and N.J. Wright^{6, 11}

- ▶ 連星が単星として数えられる可能性。
- ▶ 光度L→M-L関係→M→質量比f(q)を与える→qMを加えて色等級図に戻す。
- ▶ ほとんどq>0.6なら合うが、過去の研究に合わない。

old	young	very young
6.46±0.06	6.27±0.09	6.09±0.07
2.87	1.88	1.24
2.51 - 3.28	1.55-2.29	1.08-1.53
2.30-3.58	1.37 - 2.60	1.04-1.63
14^{+6}_{-4}	25^{+25}_{-12}	35^{+36}_{-16}
	6.46±0.06 2.87 2.51–3.28 2.30–3.58	6.46±0.06 6.27±0.09 2.87 1.88 2.51–3.28 1.55–2.29 2.30–3.58 1.37–2.60

- ➤ 赤(very young)は低Avが少ない→一番遠い。
- ➤ Da Rio+'16 (T_{eff}, log g, V sin i)による分光年齢を見ると、 3 Myrの年齢幅を説明できる。
- ➤ さらに青(old)は回転速度が遅い。→ disk-lockingか。今後、降着との関連も調べる。

Complex Organic Molecules toward Embedded Low-mass Protostars*

Jennifer B. Bergner¹, Karin I. Öberg², Robin T. Garrod³, and Dawn M. Graninger²

- ➤ 小質量星のCOM (水素リッチ 6原子以上)は生命の起源。
- Table 1

 Source Information of the Complete 16-object c2d Embedded Protostar Sample with Ice Detections

>	ダスト表面で小さい負	飽和分子 (第0世代)
---	------------	-------------

- ▶ 光解離でラジカル
- ▶ >30 Kで第1世代
- ▶ → 100-300 Kでガス反応 (第2世代)
- ➤ これまで14天体だがprestellar coreから水氷が 溶ける段階まで。
- ▶ 大質量星より多い、少ない両方の予想。
- ➤ おもしろい天体だけでなくClass 0/I 16個を選んだ。
- ▶ 北半球、氷吸収、IRAM 30 m, 27"-21"
- ➤ 光学的に薄いLTEで柱密度。CH3OHの柱密度は 文献から。
- 上限値を使わず、検出値だけだと過大評価
- → survival analysis
- ➤ Kaplan-Meier推定(経過観察の中断など)・・・ 全てを昇順にして、検出に挟まれた上限は小さ い方の検出値とする(検出に上限で重み付け)。

Source	R.A. (J2000.0)	Decl. (J2000.0)	Cloud	$L_{ m bol} \ L_{\odot}$	$M_{ m env} \ M_{\odot}$	$\alpha_{ m IR}^{ m a}$	N(CH ₃ OH) 10 ¹³ cm ⁻²	$N({\rm H_2O_{(ice)}})^{\rm a}$ $10^{18}~{\rm cm}^{-2}$	X _{CH₃OH (ice)} ^b % H ₂ O	X _{NH3 (ice)} ^b % H ₂ O	rms (mK)
B1-a ^c	03:33:16.67	31:07:55.1	Perseus	1.3 ^d	2.8 ^d	1.87	10.21 [3.24]	10.39 [2.26]	<1.9	3.33 [0.98]	3.6
B1-c	03:33:17.89	31:09:31.0	Perseus	3.7 ^d	17.7 ^d	2.66	1.69 [0.51]	29.55 [5.65]	< 7.1	< 4.04	5.5
B5 IRS1 ^c	03:47:41.61	32:51:43.8	Perseus	4.7 ^d	4.2 ^d	0.78	1.77 [0.46]	2.26 [0.28]	< 3.7	< 2.09	7.0
HH 300	04:26:56.30	24:43:35.3	Taurus	1.27 ^e	0.03^{f}	0.79	0.24 [0.10]	2.59 [0.25]	< 6.7	3.46 [0.90]	5.8
IRAS 03235+3004 ^c	03:26:37.45	30:15:27.9	Perseus	1.9 <mark>d</mark>	2.4^{d}	1.44	1.17 [0.08]	14.48 [2.26]	4.2 [1.2]	4.71 [1.00]	4.2
IRAS 03245+3002	03:27:39.03	30:12:59.3	Perseus	7.0^{d}	5.3 ^d	2.70	1.54 [0.29]	39.31 [5.65]	< 9.8	< 4.40	3.7
IRAS 03254+3050	03:28:34.51	31:00:51.2	Perseus		0.3^{d}	0.90		3.66 [0.47]	<4.6	6.66 [1.37]	3.9
IRAS 03271+3013	03:30:15.16	30:23:48.8	Perseus	0.8^{d}	1.2 ^d	2.06	0.42 [0.04]	7.69 [1.76]	< 5.6	6.37 [1.86]	4.8
IRAS 04108+2803°	04:13:54.72	28:11:32.9	Taurus	0.62 ^e		0.90	1.04 [0.44]	2.87 [0.4]	< 3.5	4.29 [1.03]	4.0
IRAS 23238+7401	23:25:46.65	74:17:37.2	CB244			0.95	2.19 [1.01]	12.95 [2.26]	< 3.6	<1.24	2.7
L1014 IRS	21:24:07.51	49:59:09.0	L1014			1.28	0.88 [0.56]	7.16 [0.91]	3.1 [0.8]	5.20 [1.43]	2.8
L1448 IRS1	03:25:09.44	30:46:21.7	Perseus	17.0 ^d	16.3 ^d	0.34	0.23 [0.04]	0.47 [0.16]	<14.9	< 4.15	3.7
L1455 IRS3	03:28:00.41	30:08:01.2	Perseus	0.32^{d}	0.2^{g}	0.98	1.46 [0.88]	0.92 [0.37]	<12.5	6.21 [3.51]	3.9
L1455 SMM1	03:27:43.25	30:12:28.8	Perseus	3.1 ^d	5.3 ^d	2.41	1.48 [0.76]	18.21 [2.82]	<13.5	< 8.29	4.1
L1489 IRS ^c	04:04:43.07	26:18:56.4	Taurus	3.7 ^e	0.1 ^h	1.10	0.69 [0.14]	4.26 [0.51]	4.9 [1.5]	5.42 [0.96]	5.4
SVS 4-5°	18:29:57.59	01:13:00.6	Serpens	38 ⁱ		1.26	11.19 [4.29]	5.65 [1.13]	25.2 [3.5]	\sim 4.3	3.9

柱密度(上)、CH3OHとの比%(下) 検出、上限

Complex Organic Molecules toward Embedded Low-mass Protostars*

Jennifer B. Bergner¹, Karin I. Öberg², Robin T. Garrod³, and Dawn M. Graninger²

➤ M_{env}との相関。HC₃N: cold envelopeで反応。 CH₃CN: 高温反応、HNCO: 両温度。CH₃OH: ダスト反応。

- ➤ モデル。
- ightharpoonup q=2/5, n₁₀₀₀=1e6 cm⁻³, α =1.5, T=10-250 K_o

$$T(r) = 60 \left(\frac{r}{2 \times 10^{15} \text{ m}}\right)^{-q} \left(\frac{L_{\text{bol}}}{10^5 L_{\odot}}\right)^{q/2} \text{K}, \quad n_{\text{H}}(r) = n_{1000 \text{ au}} \left(\frac{r}{1000 \text{ au}}\right)^{-\alpha} 0.01$$

- ➤ HNCO以外は桁では観測と同じ。
- ➤ HNCOの反応率を上げるべき(Belloche+'17)。
- ➤ CH₃OHが系統的に高いのは外側でoveractive chemical desorption(?)。

- ➤ 反応温度分布。
 cf., 回転温度 CH3OH~8 K,
 CH₂CO~8 K, CH₃CHO~8 K,
 CH₃OCHO~16 K, CH₃CN~27 K,
 HC₃N~14 K, HNCO~14 K。
 HC₃N以外はnon LTE。
- ▶ 大質量星とはおよそ同じ。
- ▶ 彗星とも同じなので太陽は典型的。
- ➤ HC₃NとCH₂COは後期になくなるかも。