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Table 2. In this table we present the types of the sources we derive for the MYSOs of our sample and the ages we derive by
comparing our cavity sizes to the work of Offner et al. (2011). 6.4, is the cavity opening angle. The units of the line fluxes
are Wm ™ 2um™'. For clarity, we also include the emission line information from Cooper (2013), Pomohaci (2017), Porter et al.
(1998)and Cooper et al. (2013) used in the classification process and some relevant geometric information from our previous
work, Frost et al. (2021), which we discuss in Section 4. The cavity opening angle of G305 is starred as this sources has a

Name RA (J2000) DEC (J2000) log(+~) Distance T ) ] ) :
(hemss) (d:m:s) © (kpo) secondary dusty source within its outflow cavity, which likely affected the fitting process. As a result, we do not calculate an
G305.2040.21  13:11:10.45  -62:34:38.6 47! 402 age for this source. A full discussion can be found in Frost et al. (2019). The spectral information for M8EIR, comes from Porter
W33A 18:14:39.0  -17:52:03 4.5° 2.4 et al. (1998), where the line strength is presented relative to the flux of the Bry, so these ratios are reiterated for that source.
NGSC 2264 ;RSl 06:41:10.15  +09:29:33.6 3-(752_ 0-7: No line data are included for IRAS 17216-3801 as the emission lines were present in the differential phases and visibilities of the
:12:54. 7:59:23.60 4. 1.8 : . : . : .
R A82 515721?&2801 (1)2;.22 gi is-o 1004 480 5 110 spectrointerferometric data of Kraus et al. (2017). The non-dectection of Hz for AFGL 2136 is discussed in Section 2. ———
MBEIR 18:04:53.18  -24:26:41.4 3'8111 1':1331214 Name R&ust Ocav  Cavity densit)l Type H, flux Brvy flux Br 10 flux fl-Fell flux Age
AFGL 2136  18:22:26.38  -13:30:12.0 5 2.21% (an) ) (gem™=?) fog yr)
S255 IRS3 12 (=Rsus) 20 6x10~1° I (1.20£0.06)x10~'7 <1.2x10~*7 <2.5x107'® <2.1x107'8 3.1
W33A 18 (=Rsup) 20 1x10™** II (8.7£0.1)x10—18  (2.1£0.2)x10~*7 - - 3.1
G305.204+0.21 | 60 (~3.5Rsup) 12% 1x10~1° II  (4.240.003)x10~'"  (1.140.002)x 107 . - -
AFGL 2136 125 (~4Rsup)  22.5 3x10~ I1/111 - (2.940.1)x10~ 7 - - 3.5
NGC 2264 IRS1 4 (=Rsup) 25 8x10~2 I11 <7.0x1071° (9.940.3)x107*°®  (4.04£0.3)x107'® (1.84£0.3)x107'¢| | 3.8
IRAS 17216-3801 | 100 (~3Rsup) 40 9x10~%! I11 - - - - 5.0
MSEIR 30 (~1.5Rsuws) 25 8x10~2 111 - 1 0.37 0.06 3.8
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Figure 2. Histogram showing whether substructure is present with the MYSOs for each evolutionary type. Within this work
we define substructure as a) a deviation from axisymmetry within the disc or 2) the expansion of the inner dust radius beyond
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The GRAVITY Young Stellar Object survey. VII. The inner dusty disks of T Tauri
stars

The GRAVITY Collaboration, K. Perraut et al. % These protoplanetary disks in T Tauri stars play a central role
in star and planet formation. We spatially resolve at sub-au scales the innermost regions of a sample of T Tauri’s disks to
better understand their morphology and composition. We extended our homogeneous data set of 27 Herbig stars and collected
near-IR K-band observations of 17 T Tauri stars, spanning effective temperatures and luminosities in the ranges of 4000-6000 K
and 0.4-10 Lsun. We focus on the continuum emission and develop semi-physical geometrical models to fit the interferometric
data and search for trends between the properties of the disk and the central star. The best-fit models of the disk’s inner rim
correspond to wide rings. We extend the Radius-luminosity relation toward the smallest luminosities (0.4-10 Lsun) and find
the R~L(1/2) trend is no longer valid, since the K-band sizes measured with GRAVITY are larger than the predicted sizes
from sublimation radius computation. No clear correlation between the K-band half-flux radius and the mass accretion rate is
seen. Having magnetic truncation radii in agreement with the K-band GRAVITY sizes would require magnetic fields as strong
as a few kG, which should have been detected, suggesting that accretion is not the main process governing the location of the
half-flux radius of the inner dusty disk. Our measurements agree with models that take into account the scattered light. The
N-to-K band size ratio may be a proxy for disentangling disks with silicate features in emission from disks with weak and/or
in absorption silicate features. When comparing inclinations and PA of the inner disks to those of the outer disks (ALMA) in
nine objects of our sample, we detect misalignments for four objects.
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Steady-state accretion in magnetized protoplanetary disks

Timmy N. Delage, Satoshi Okuzumi, Mario Flock, Paola Pinilla, Natalia Dzyurkevich % [abridged] We present a
1+1D global magnetically-driven disk accretion model that captures the essence of the MRI-driven accretion, without resorting
to 3D global non-ideal MHD simulations. The gas dynamics is assumed to be solely controlled by the MRI and hydrodynamic
instabilities. For given stellar and disk parameters, the Shakura-Sunyaev viscosity parameter o is determined self-consistently
under the framework of viscously-driven accretion from detailed considerations of the MRI with non-ideal MHD effects (Ohmic
resistivity and ambipolar diffusion), accounting for disk heating by stellar irradiation, non-thermal sources of ionization, and
dust effects on the ionization chemistry. Additionally, the magnetic field strength is constrained and adopted to maximize
the MRI activity. We demonstrate the use of our framework by investigating steady-state MRI-driven accretion in a fiducial
protoplanetary disk model around a solar-type star. We find that the equilibrium solution displays no pressure maximum at the
dead zone outer edge, except if a sufficient amount of dust particles have accumulated there before the disk reaches a steady-state
accretion regime. Furthermore, the steady-state accretion solution describes a disk that displays a spatially extended long-lived
inner disk gas reservoir (the dead zone) accreting a few 10~? My.yr~!. By conducting a detailed parameter study, we find that
the extend to which the MRI can drive efficient accretion is primarily determined by the total disk gas mass, the representative
grain size, the vertically-integrated dust-to-gas mass ratio, and the stellar X-ray luminosity. A self-consistent time-dependent
coupling between gas, dust, stellar evolution models and our general framework on million-year timescales is required to fully
understand the formation of dead zones and their potential to trap dust particles.
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10.

The statistical properties of protostellar discs and their dependence on metallicity
Daniel Elsender, Matthew R. Bate % We present the analysis of the properties of large samples of protostellar discs formed
in four radiation hydrodynamical simulations of star cluster formation. The four calculations have metallicities of 0.01, 0.1, 1
and 3 times solar metallicity. The calculations treat dust and gas temperatures separately and include a thermochemical model
of the diffuse interstellar medium. We find the radii of discs of bound protostellar systems tend to decrease with decreasing
metallicity, with the median characteristic radius of discs in the 0.01 and 3 times solar metallicity calculations being ~ 20 and
~ 65 au, respectively. Disc masses and radii of isolated protostars also tend to decrease with decreasing metallicity. We find that
the circumstellar discs and orbits of bound protostellar pairs, and the two spins of the two protostars are all less well aligned
with each other with lower metallicity than with higher metallicity. These variations with metallicity are due to increased small
scale fragmentation due to lower opacities and greater cooling rates with lower metallicity, which increase the stellar multiplicity
and increase dynamical interactions. We compare the disc masses and radii of protostellar systems from the solar metallicity
calculation with recent surveys of discs around Class 0 and I objects in the Orion and Perseus star-forming regions. The masses
and radii of the simulated discs have similar distributions to the observed Class 0 and I discs.
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1.

Unveiling the traits of massive young stellar objects through a multi-scale survey

A. J. Frost, R. D. Oudmaijer, W. J. de Wit, S. L. Lumsden s The rarity and deeply embedded nature of stars with
masses larger than 8 solar masses has limited our understanding of their formation. Previous work has shown that complementing
spectral energy distributions with interferometric and imaging data can probe the circumstellar environments of massive young
stellar objects (MYSOs) well. However, complex studies of single objects often use different approaches in their analysis.
Therefore the results of these studies cannot be directly compared. This work aims to obtain the physical characteristics of
a sample of MYSOs at 0.01" scales, at 0.1" scales, and as a whole, which enables us to compare the characteristics of the
sources. We apply the same multi-scale method and analysis to a sample of MYSOs. High-resolution interferometric data,
near-diffraction-limited imaging data, and a multi-wavelength spectral energy distribution are combined. By fitting simulated
observables derived from 2.5D radiative transfer models of disk-outflow-envelope systems to our observations, the properties of
the MYSOs are constrained. We find that the observables of all the MYSOs can be reproduced by models with disk-outflow-
envelope geometries, analogous to the Class I geometry associated with low-mass protostars. The characteristics of the envelopes

and the cavities within them are very similar across our sample. On the other hand, the disks seem to differ between the objects,
in particular with regards to what we interpret as evidence of complex structures and inner holes. This is comparable to the
morphologies observed for low-mass young stellar objects. A strong correlation is found between the luminosity of the central
MYSO and the size of the transition disk-like inner hole for the MYSOs, implying that photoevaporation or the presence of
binary companions may be the cause.
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