Star Formation News Letter #348 Nos. 19-23

No. 19 Constraints on star formation in NGC 2264, R.J. Parker & C. Schoettler, MNRAS, 510, 1136 (2022)

No. 23 Constraining the initial conditions of NGC 2264 using ejected stars found in Gaia DR2, C. Schoettler et al. MNRAS, 510, 3178 (2022)

No. 20 Sh 2-301: a blistered Hii region undergoing star formation, R. Pandey et al., ApJ, 926, 22 (2022)

No. 21 An upper limit on late accretion and water delivery in the Trappist-1 exoplanet system, S.N. Raymond et al. Nature Astronomy, 6, 80 (2022)

No. 22 A new method for measuring the 3D turbulent velocity dispersion of molecular clouds, M. Stewart & C. Federrath, MNRAS, 509, 5237 (2022)

No. 19 Constraints on star formation in NGC 2264, R.J. Parker & C. Schoettler, MNRAS, 510, 1136 (2022)

No. 23 Constraining the initial conditions of NGC 2264 using ejected stars found in Gaia DR2, C. Schoettler et al. MNRAS, 510, 3178 (2022)

Parker+22 Fig. 1

Gaia DR2 での解析の再検討

主張は共通: NGC 2264の初期密度はρ~10⁴ M_☉ pc^{−3}で高かった 近接遭遇により円盤を力学的に壊わしただろう Schoettler+21: Gaia によるデータ解析+ Runaway & Walkaway の頻度 Parker & Schoettler 21: Cluster の substructure が残っているから 解析方法は ONC で成功したもの

S Mon RW, WW 候補星, Schoettler+22 Fig. 5

IRS1/IRS2 についても同様の解析. 2 Myr.

N体シミュレーションとの比較

Schoettler+22 Fig. 5

Cluster の性質を数値化

Minimum Spanning Tree (MST) Wikipedia

Q-parameter is the mean length of the MST, \bar{m} , divided by the mean edge length of the complete graph, \bar{s} :

$$Q < 0.7$$
 clumpy
 $Q > 0.9$ smooth $Q = \frac{\bar{m}}{\bar{s}}$.

Mass segregation ratio

$$\Lambda_{\rm MSR} = \frac{\langle l_{\rm average} \rangle}{l_{\rm subset}} \frac{+\sigma_{5/6} / l_{\rm subset}}{-\sigma_{1/6} / l_{\rm subset}},$$

$$\Sigma = \frac{N-1}{\pi r_N^2},$$

N = 10

No. 21 An upper limit on late accretion and water delivery in the Trappist-1 exoplanet system, S.N. Raymond et al. Nature Astronomy, 6, 80 (2022)

Transiting Planets and Planetesimals Small Telescope d = 12 pc, $\exists \nu n^2 \rho \land \delta \otimes E \otimes E$ 共鳴軌道 8:5,5:3,3:2,3:2,4:3,3:2 外から微惑星が乱入したら共鳴が 壊れる→共鳴を保つ静穏な環境→ 水が供給されない

Planet	Mass	Radius	Semimajor	Eccentricity	Longitude of	Mean
	(M _⊕)	(R⊕)	Axis a (AU)	e	periastron ϖ (°)	Anomaly M (°)
Fiducial (Set 1)						
b	1.3925	1.1174	0.011551	0.002344	253.61247	105.78489
с	1.2943	1.0967	0.015820	0.001224	132.62793	54.89836
d	0.3958	0.7880	0.02229	0.005045	202.45580	171.39157
e	0.6824	0.9200	0.02930	0.007013	52.42997	30.97582
\mathbf{f}	1.0634	1.0448	0.038551	0.008298	170.04247	247.44087
g	1.3464	1.1294	0.046896	0.003760	355.97714	87.27858
h	0.3198	0.7552	0.061963	0.003571	172.18673	118.58431

Rogue planetesimal: (1) 単一の微惑星が落下, (2) 多数の微惑星の落下

Planet	Orbital radius	Maximum bombardment	Maximum water delivered
	(AU)	mass (M_{\oplus})	(Earth oceans)
b	0.0115	0.00038	0.15
с	0.0158	0.0015	0.64
d	0.0223	0.0016	0.68
c	0.0293	0.0035	1.54
f	0.0385	0.008	3.41
g	0.0469	0.018	7.62
h	0.0620	0.012	6.16

No. 20 Sh 2-301: a blistered Hii region undergoing star formation, R. Pandey et al., ApJ, 926, 22 (2022) Fig. 11

Star Extinction

HI

- NE cluster 194 メンバー 距離は
 3.54 kpc Sh 2-301 と同じ
 ALS 207により trigger され形成
- Sh 2-301の従来の距離 5.8 kpc は 過大評価 (赤化側が異常 Rv= 3.7)
- Mass function $N \propto M^{-0.87 \pm 0.07}$ ($0.4 < M/M_{\odot} < 7$) やや平坦
- NW側はガス密度が極端に低い
- ALS 207からのUVは漏れている
- ALS 207はHFS で出来た(かも)

7h09m36

No. 22 A new method for measuring the 3D turbulent velocity dispersion of molecular clouds, M. Stewart & C. Federrath, MNRAS, 509, 5237 (2022) 観測された線幅から乱流の強さを見積もる方法の開発

速度分散で視線方向の成分だけが見える. $\sqrt{3}$ 倍するだけで良い??

$$\sigma_{i,los} = \sqrt{\frac{\sum_{p} \sigma_{v_{los} p}^{2}}{N_{p}}}, \quad \sigma_{v_{los} p} = \left(\left\langle v_{los}^{2} \right\rangle_{p} - \left\langle v_{los} \right\rangle_{p}^{2}\right)^{\frac{1}{2}} \quad \forall p. \qquad \left\langle v_{los} \right\rangle_{p} = \frac{\sum_{i=1}^{N_{los}} \rho_{i} v_{los i}}{\sum_{i=1}^{N_{los}} \rho_{i}} \quad \forall p, \qquad \left\langle v_{los}^{2} \right\rangle_{p} = \frac{\sum_{i=1}^{N_{los}} \rho_{i} v_{los i}}{\sum_{i=1}^{N_{los}} \rho_{i}} \quad \forall p.$$
著者がお薦めの推定法

$$\sigma_{(p-grad),los}^2 = \sigma_{i,los}^2 + \sigma_{(c-grad),los}^2$$
天球面での速度勾配

$$\sigma_{(c-\text{grad}),\text{los}}, \qquad (\langle v_{\text{los}} \rangle - \text{grad}_{\text{los}})_p = \langle v_{\text{los}} \rangle_p - \text{grad}_{\text{los},p}, \qquad \text{grad} = a + bx + cy$$

