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Alcala, A. Frasca, K. Maucéo, J. Campbell-White, M. Siwak, L. Venuti, P. C. Schneider, A. Ké6spél, A. Caratti

o Garatti, E. Fiorellino, E. Higliaco, R. K. Yadav % Observing the spatial distribution and excitation processes of

17. Post-outburst evolution of bonafide FUoar V2493 Cyg: A Spectro-photometric monitor-
ing
Arpan Ghosh, Saurabh Sharma. Joe I’. Ninan, Devendra K. Ojha, Bhuwan C. Bhatt. D. K. Sahu, Tapas Baug,
R. K. Yadav, Puji Irawati, A. S. Gour, Neelam Panwar, Rakesh Pandey. Tirthendu Sinha, Aayvushi Verma

18 Turbulence in compact to giant H 1I regions
" J. Garcia-Vazquez, William J. Henney, H. O. Castaneda 4 Radial velocity fluctuations on the plane of the sky are a

19 Similar levels of deuteration in the pre-stellar core L1544 and the protostellar core
" HH211
K. Giers, S. Spezzano, P. Caselli, E. Wirstrom, O. Sipilid, J. E. Pineda, E. Redaelli, C. T. Bop, F. Lique % In

2 @ JWST Peers into the Class I Protostar TMC1A: Atomic .Jet and Spatially Resolved
Dissociative Shock Region
Daniel Harsono, Per Bjerkeli, Jon Ramsey, Klaus Pontoppidan, Lars Kristensen, Jes Jorgensen, Hannah Cal-
cutt, Zhi-Yun Li. Adele Phinkett & Outflows and winds launched from young stars play a crucial role in the evalution

]
@ Inner Planetary System Gap Complexity is a Predictor of Outer Giant Planets

Matthias Y. I'le, Lauren M. Weiss & The connection between inmer small planets and onter giant planets is crucial ta our

55 A Constraint on the Amount of Hydrogen from the CO Chemistry in Debris Disks
" Kazunari Iwasaki, Hiroshi Kobayashi, Aya E. Higuchi, Yuri Aikawa & The faint CO gases in debris disks are easily
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Investigating the Impact of Metallicity on Star Formation in the Outer Galaxy. L
VLT /KMOS Survey of Young Stellar Objects in Canis Major

Dominika Itrich, Agata Karska, Marta Sewilo, Lars E. Kristensen, Gregory J. Herczeg, Suzanne Ramsay,
William J. Fischer, Benoit Tabone, Will R. M. Rocha, Maciej Koprowski, Ngan Lé, Beata Deka-Szymankiewicz

Investigating the Impact of Metallicity oan Star Formation in the Outer Galaxy. 1.
VLT /KMOS Survey of Young Stellar Objects in Canis Major

Dominika Itrich, Agatan Karska, Marta Sewilo, Lars E. Kristensen, Gregory J. Herczeg, Suzanne Ramsay,
William .J. Fischer, Benoit Tabhane, Will R. M. Rocha. Maciej Koprowski. Ngan Lé&, Beata Deka-Szymankiewicz
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@In scarch for infalling clumps in moleccular clouds — A cataloguc of CO bluc-profiles

Zhibo Jiang. Shaobo Zhang, Zhiweil Chen, Yang Yang, Shuling Yu, Ilaoran Feng, Ji Yang, the NMWISP group %

26. Near infrared view on the phatadissociation regions S2565, S257, NGC7538 and S140

27.

M. 8. Kirsanova, A. M. Tatarnikov, P. A. Boley, D. S. Wiebe, N. A. Maslennikova, A. A. Tatarnikov % W&t

Classification of Chandra X-ray Sources in Cygnus OB2

Vinay L. Kashvap, Mario G. Guarcello, Nichnlas .I. Wright, Jeremy .I. Drake, Ettore Flaceomio, Tom L.
Aldcroft, Juan F. Albacete Calombo, Kevin Driggs, Francesco Damiani, Janet E. Drew, Eduardo L. Martin,
Giusi Miceln, Tim Naylor, Salvatore Sciortino # We have devised & predominantly Naive Bayes method to classify

28. SPYGLASS. IV. New Stellar Survey of Recent Star Formation within 1 kpc

Ronan Kerr, Adam Kraus, Aaron Hizzuto % Young stellar populations provide a powerful record that traces millions

3 The magnetic fields around the cometary globules, L328, L323 and L331

Siddharth Kumar, Archana Soam, Nirupam Roy % This work presents the magnetic field geometry in a complex of
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Inner Planetary System Gap Complexity is a Predictor of Outer Giant Planets
Matthias Y. He, Lauren M. Weiss % The connection between inner small planets and outer giant planets is crucial to our
understanding of planet formation across a wide range of orbital separations. While Kepler provided a plethora of compact
multi-planet systems at short separations (< 1 AU), relatively little is known about the occurrence of giant companions at
larger separations and how they impact the architectures of the inner systems. Here, we use the catalog of systems from the
Kepler Giant Planet Search (KGPS) to study how the architectures of the inner transiting planets correlate with the presence
of outer giant planets. We find that for systems with at least three small transiting planets, the distribution of inner-system gap
complexity (C), a measure of the deviation from uniform spacings, appears to differ (p < 0.02) between those with an outer giant
planet (50Mg < M, sini < 13Mj,,,) and those without any outer giants. All four inner systems (with 3+ transiting planets)
with outer giant(s) have a higher gap complexity (C > 0.32) than 79% (19/24) of the inner systems without any outer giants
(median C ~ 0.06). This suggests that one can predict the occurrence of outer giant companions by selecting multi-transiting
systems with highly irregular spacings. We do not find any correlation between outer giant occurrence and the size (similarity
or ordering) patterns of the inner planets. The larger gap complexities of inner systems with an outer giant hints that massive
external planets play an important role in the formation and /or disruption of the inner systems.
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o0. JWST Peers into the Class I Protostar TMC1A: Atomic Jet and Spatially Resolved
Dissociative Shock Region

Daniel Harsono, Per Bjerkeli, Jon Ramsey, Klaus Pontoppidan, Lars Kristensen, Jes Jgrgensen, Hannah Cal-
cutt, Zhi-Yun Li, Adele Plunkett #% Outflows and winds launched from young stars play a crucial role in the evolution
of protostars and the early stages of planet formation. However, the specific details of the mechanism behind these phenom-
ena, including how they affect the protoplanetary disk structure, are still debated. We present JWST NIRSpec Integral Field
Unit (IFU) observations of atomic and Hz lines from 1 — 5.1 pm toward the low-mass protostar TMC1A. For the first time, a
collimated atomic jet is detected from TMCI1A in the [Fe II] line at 1.644 pum along with corresponding extended H2 2.12 um
emission. Towards the protostar, we detected spectrally broad H I and He I emissions with velocities up to 300 km/s that can
be explained by a combination of protostellar accretion and a wide-angle wind. The 2um continuum dust emission, H I, He I,
and O I all show emission from the illuminated outflow cavity wall and scattered line emission. These observations demonstrate
the potential of JWST to characterize and reveal new information about the hot inner regions of nearby protostars. In this
case, a previously undetected atomic wind and ionized jet in a well-known outflow.
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Figure 1. NIRSpec spectrum extracted from the central 0’3 spaxels.
The spectral energy distribution of TMC1A from other observations
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cludes points from Skrutskie et al. 2006, Di Francesco et al. 2008,
Evans et al. 2009, Karska et al. 2013, and Green et al. 2013) . Her-
schel PACS observations of Green et al. (2013) are shown in orange.
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Figure 3. a.) JWST 2pm continuum map 18 shown in color. A linear scale between 0.5% to Y9% of the intensity distribution 1s used. We
have overlaid the HS7T F160W and ALMA 230 GHz continuum maps on top of the 2um map to orient our results with respect to previous
observations. The contours are chosen to highlight the features of the H57T image and the location of the millimeter dust disk. . ) The integrated
H 1 Pa-a map 1s shown by the black contour lines over top of the 2pum map. Contours from 95% to 98% of the intensity distribution are used.
ALMA observations of the blue- and red-shifted rotational transition of *CO (J = 2 — 1) are shown by the blue and red contours, respectively.
The “CO J = 2 — 1 line is only showing velocities > 1.5 km/s from systemic. The contours are chosen to highlight the orientation of the
"coJ=2-1 gas. ¢.) A comparison between [Fe II] 1.644 pam, He 1 A10835, and “CO J = 2 — 1 line emission. The integrated [Fe 1I]
line is shown in the hackground in green with a linear scale spanning hetween 6015 to 99% of the intensity distribution. The He T map is shown
by the brown contours with levels from 95% to 97% of the intensity distribution). d.) A comparison between [Fe 11] 1.644 pm, O 1 A1.12, and
CO J = 2 — 1 lines. The contours of O I (in brown) are also showing the brightest components (95%-97% of the intensity distribution). e.)
The integrated [Fe 11] map is overlaid on top of the integrated H; 2.12pm map. The H, map is drawn with colors spanning from So up to the
peak intensity. The green contours show [Fe II] but only the brightest pixels in the map (> 96% of the intensity distribution). The center of the
millimeter dust disk is indicated by the star. In each panel, a 50 au scale bar 1s show 1n the bottom left.
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o9 The magnetic fields around the cometary globules, L328, L323 and L331
Siddharth Kumar, Archana Soam, Nirupam Roy % This work presents the magnetic field geometry in a complex of
three cometary (with head-tail morphology) globules, namely LDN 323, LDN 328, and LDN 331, using R-band polarization
measurements of background stars. These observations were combined with a Planck sky survey to study the large-scale
morphology of the magnetic fields in the region. The distances of the target stars were adopted from the Gaia catalog. The
variation of degree of polarization and polarization position angle with distances of stars is analyzed. The field geometry is
mostly found to follow the cometary shape of the cloud, with some randomness at certain locations. For studying the correlation
between cloud morphology and magnetic field orientations, a modified version of the Histogram of Relative Orientation analysis

was employed.
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Figure 1. The figure above shows the Ha image of the region, showing all .§ P [ I
three clouds L323, L328 and L331. z ‘ ) k | ™
, w m r# % HHﬁ*
A= __—\/ AN \ V4 : l AHm, o Tt [
LEE D126 : Plank D 7R MR 5 7 Fo R SEIOERTF IR o MR
o ‘
00 05 10 1.9 20 4.5 3.0 35 40 a5
distance (kpc)
17°50' ®1 4 cats poirts betmeen
17°20° ::u :-ow:s :«:’0002 21::(“
1
. L331
R o
-18°00" { aeco X 5 b
" v s S
- m 4 ' ‘19114 |
= : i
S 2 3 + ! I )
g ’ g 1 ’ ] ,.. i
10' s 10 o ! ] ‘ j‘.
| 1 | . [ . ;
(60 os 10 1.5 20 .5 a0 s 10 45
distance (kpc)
20" 0
Figure 4. The figure above shows the polarization percentage as a function of distance obtained from Bailer-Jones 2021 for the clouds (from top to bottom)
| 1323, L32%, and L331
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Figure 3. The figure above shows the plane of the skv magnetic field inferred from Planck polarization vectors on the left and optical polarization vectors on
the right, both plotted on an R-band subtracted Ha image.
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Figure 6. The fipure ahove shows the distribution of polarization angles for 1.323 with a Gaussian fit to the palarization angle distribution on the left. The
distributian has heen divided into smaller distributions T and I colored as vellow and blue respectively. The colored dots represent the polanzation of stars,
where larger dots show higher polanization and vice-versa. On the night we have distributions T and T1 plotted on the cloud with the major axis of the clowd

plotted in white.
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Figure 7. The figure above shows the distribution of poelarization angles for L328 with a Gaussian fit to the polarization angle distribution on the left. The
distribution has been divided into smaller distributions I, IT and III colored as yellow, red and blue respectively. The colored dots represent the polarization of
stars, whete larger dots show higher polarization and vice-versa. On the night we have distributions L I and L plotied on the cloud. 'The major axis for the head

and tail has been plotted in white.
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Figure 8. The figure above shows the distribution of polarization angles for L331 with a Gaussian fit to the polarization angle distribution on the lefl. The
distrabution has been divided into smaller distributions I IT and T colored as yellow, red and hlue respectively. The colored dots represent the polarization of

stars, where larger dots show higher polarization and vice-versa. On the right we have distributions L, IT and III plotted on the cloud. The major axis for the head
and tail has been plotted in white.
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25. In search for infalling clumps in molecular clouds — A catalogue of CO blue-profiles
Zhibo Jiang, Shaobo Zhang, Zhiwei Chen, Yang Yang, Shuling Yu, Haoran Feng, Ji Yang, the MWISP group %
We have started a systematic survey of molecular clumps with infall motions to study the very early phase of star formation. Our
first step is to utilize the data products by MWISP to make an unbiased survey for blue asymmetric line profiles of CO isotopical
molecules. Within a total area of ~ 2400 square degrees nearby the Galactic plane, we have found 3533 candidates showing
blue-profiles, in which 3329 are selected from the '*CO&'?>CO pair and 204 are from the >*CO&C'®0 pair. Exploration of the
parametric spaces suggests our samples are in the cold phase with relatively high column densities ready for star formation.
Analysis of the spatial distribution of our samples suggests that they exist virtually in all major components of the Galaxy.
The vertical distribution suggest that the sources are located mainly in the thick disk of ~ 85 parsec, but still a small part are
located far beyond Galactic midplane. Our follow-up observation indicates that these candidates are a good sample to start a
search for infall motions, and to study the condition of very early phase of star formation.
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Fig. 2: The spectra (left) and gas distributions (right) of the candidates. On the left panels, the red, green
and bluc lines represent C80, *CO and '2CO cmissions, respectively. To enhance s/n ratios of the
lines, the spectra are smoothed with median filter for each 3 velocity channels. For the same reason, the
C!30 spectra are also smoothed with 3x3 spatial pixels, The dashed line indicates the system velocity.
(On the upper-right corners we indicate the Galactic coordinates (1, b), and the line-pairs used in the
searching procedure. On the upper-left are the name codes of the candidates. The right panels show the
integrated intensitv map of the optically thin lines (contours) overlaid on those of the optically thick

lincs (grey scale). The red pluses indicate the positions where the blue-profiles are detected.

Pair-1

I'ig /1K)

==
=

(12CO-13COMPair) H33291dE,
Pair-2 (13CO-C180®MPair) H2044

BCONHKEZEMICE L C18OMFEMICE <

| B ™Y

02869 - 0377 - 007

5

™Y

028.59, +5.77) ]
1COo & Cf O ]

1 M| A | B |

TS 10D 125

1)

0.0 2.5 5.0
Visgr (km s

(b) 02869+0377+0073

Al (arcmin;

11.57
vi
11.C _a
_ <)
= L&
E bey
v
2 0.0 &
-~
a C
95 —
)
=
4an t‘n
[1H)
-
B 8‘; 3

:12CO

o]

f To Observer

-
b

-
° -
- ——

static envelope

§ Figure 6 A schematic explanation of why line profiles of optically thick, high-excitation
‘ lines are skewed to the blue in a collapsing cloud, The ovals are loci of constant hine-of- 3
g sight velocity. for v(r) o r U5 Each line of sight intersects these loci al two points. The 4
ave a higher T, , especially in lines that are hard to excite, so i ,’
g that T (R7) = T (Ry) and To(B2) = T (81). If the line is sufficiently opaque, the point 3§
‘f R, will ohscure the hrighter R, but & lies in front of B, . The result is a profila with the
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Figure 5 The origin of various parts of the line profile for & cloud undergoing inside-out j

collapse. The static envelope outside gy produces the eentral self-shsorption dip, the blue  §
peak comes from the back of the cloud, and the red peuk from the front of the cloud. The §

faster collapse near the center produces line wings, but these are usually confused by outflow
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Fig. 4: Frequency distributions of (a) central velocities; (b) excitation temperatures; (c) derived H» col- 10
umn densities (ecm~2 on log scale); (d) Line widths (FWHM) of the optically thin lines. In the inset of

(b), the dashed curve is a log-normal fit with (o, x) = (2.41, 0.25) to overall T, distribution. In the inset

of (d), the dashed curve is the best log-normal fit with (o, j2) = (0.34, 0.076), to the overall distribution 0
of FWHMs. For each parameter, the bins for both Pair-1 and Pair-2 as well as for the overall are set to

same.
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Fig. 8: The vertical distribution. The blue and red bars represents the Pair-1 and Pair-2 selected sources,

respectively. The pink dashed curve in the inset is a Gaussian fit to the overall distribution with o = 36
pc (FWHM = 85 pc).



