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Kinematic study of the Orion Complex: Analysing the young stellar
clusters from big and small structures

Sergio Sdnchez-Sanjudn,'* Jestis Herndndez,! Angeles Pérez-Villegas,! Carlos Romdn-Ziniga, !
Luis Aguilar,! Javier Ballesteros-Paredes,” Andrea Bonilla-Barroso”
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ABSTRACT

In this work, we analysed young stellar clusters with spatial and kinematic coherence in the Orion star-forming complex. For
this study, we selected a sample of pre-main sequence candidates using parallaxes, proper motions and positions on the colour-
magnitude diagram. After applying a hierarchical clustering algorithm in the SD parameter space provided by Gaia DR3, we
divided the recovered clusters into two regimes: Big Structures and Small Structures, defined by the number of detected stars
per cluster. In the first regime, we found 13 stellar groups distributed along the declination axis in the regions where there is a
high density of stars. In the second regime, we recovered 34 clusters classified into two types: 14 as small groups completely
independent from the larger structures, including four candidates of new clusters, and 12 classified as sub-structures embedded
within five larger clusters. Additionally, radial velocity data from APOGEE-2 and GALAH DR3 was included to study the phase
space in some regions of the Orion complex. From the Big Structure regime, we found evidence of a general expansion in the
Orion OB1 association over a common centre, giving a clue about the dynamical effects the region is undergoing. Likewise, in
the Small Structure regime, the projected kinematics shows the ballistic expansion in the A Orionis association and the detection
of likely events of clusters’ close encounters in the OB1 association.
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First map of D,H™ emission revealing the true centre of a prestellar
core: further insights into deuterium chemistry

L. Pagani!, A. Belloche?, and B. Parise? [
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Context. IRAS 16293E is a rare case of a prestellar core being subjected to the effects of at least one outflow.

Aims. We want to disentangle the actual structure of the core from the outflow impact and evaluate the evolutionary stage of the core.
Methods. Prestellar cores being cold and depleted, the best tracers of their central regions are the two isotopologues of trihydrogren
cation which are observable from the ground, ortho—H,D* and para-D,H*. We used the Atacama Pathfinder EXperiment (APEX)
telescope to map the para-D,H* emission in IRAS 16293E and collected James Clerk Maxwell Telescope (JCMT) archival data of
ortho—H,D*. We compare their emission to that of other tracers, including dust emission, and analyse their abundance with the help
of a 1D radiative transfer tool. The ratio of the abundances of ortho-H,D* and para—D,H™ can be used to estimate the stage of the
chemical evolution of the core.

Results. We have obtained the first complete map of para-D>-H™ emission in a prestellar core. We compare it to a map of ortho—
H,D"and show their partial anti-correlation. This reveals a strongly evolved core with a para-D,H*/ortho—H,D* abundance ratio
towards the centre for which we obtain a conservative lower limit from 3.9 (at 12 K) up to 8.3 (at 8 K) while the high extinction of the
core is indicative of a central temperature below 10 K. This ratio is higher than predicted by the known chemical models found in the
literature. Para-D,H" (and indirectly ortho—H,D") is the only species that reveals the true centre of this core, while the emission of
other molecular tracers and dust are biased by the temperature structure that results from the impact of the outflow.

Conclusions. This study invites to reconsider the analysis of previous observations of this source and possibly questions the validity
of the deuteration chemical models or of the reaction and inelastic collisional rate coeflicients of the HJ isotopologue family. This
could impact the deuteration clock predictions for all sources.
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A Model of the C IV A\ 1548, 1550 Doublet Line in T Tauri Stars

THANAWUTH THANATHIBODEE (2,' CONNOR ROBINSON (22 NURIA CALVET &% CATHERINE ESPATLLAT (1

CAELEY PrrTMAN (2! N1cOLE ARULANANTHAM & * KEVIN FRANCE 2 ° HANS MORITZ GUNTHER (& .°
SEOK-JUN CHANG @27 AND P. CHRISTIAN SCHNEIDER (2

The C 1v doublet in the UV has long been associated with accretion in T Tauri stars. However, it
is still unclear where and how the lines are formed. Here, we present a new C 1v line model based on
the currently available accretion shock and accretion flow models. We assume axisymmetric, dipolar
accretion flows with different energy fluxes and calculate the properties of the accretion shock. We
use Cloudy to obtain the carbon level populations and calculate the emerging line profiles assuming
a plane-parallel geometry near the shock. Our model generally reproduces the intensities and shapes
of the C 1v emission lines observed from T Tauri stars. We find that the narrow component is
optically thin and originates in the postshock, while the broad component is optically thick and emerges
from the preshock. We apply our model to seven T Tauri stars from the Hubble Ultraviolet Legacy
Library of Young Stars as Essential Standards Director’s Discretionary program (ULLYSES), for which
consistently determined accretion shock properties are available. We can reproduce the observations
of four stars, finding that the accretion flows are carbon-depleted. We also find that the chromospheric
emission accounts for less than 10 percent of the observed C 1v line flux in accreting T Tauri stars.
This work paves the way toward a better understanding of hot line formation and provides a potential
probe of abundances in the inner disk.
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Table 2. Results of the Accretion Flow and Shock Models

Star Meiow Ri W, Tmax i Mehoek fie10 fienn fiei2 Av?
10" Moy) (R (R (0°K)  (deg) (10-*Moyi=t) (fraction of stellar surface)  (mag) YSOMaccretion parameterz{E > T
+0.12 +0.04 . .
CVSO 58 2.6+£0.1 26+£05 02400 7.84+04 6143 2.10+212 0.069 0.00033 0.0116  1.7015:94 | n C| ination
CVSO0 90 25403 48401 02400 84401 4141 2.0010-04 0.00026  0.0290  1.05709 !
CVSO 104 1.6 £ 0.6 28406 03402 91408 57+11 IR 0.0479 0.00454 0.000316 0.01+590 C/ H rati 0,
CVSO0 107 2.240.1 27404 03403 72402 5444 2591011 0.0008 0.0156  0.0049  1.027592 %L\\t ( h k t h k)
Cvso 100A° 2.6+ 1.3 22402 02400 72400 3748 4.01%:33 0.0008 0.0217  0.00167 0.21+9:92 JIL\Pre sNOCK, POST SNOC
CVSO 146 0.5+ 0.0 29403 03401 93+02 6545 2.20%353 0.149  0.0094 0.00142 0.917%:%3 7’& 7T A 7_— /f >/ 7
CVSO 176 2.040.1 25405 02400 82+1.1 5447 0.91175-012 0.0373  0.0006  0.000046 0.4979:92
%The extinction used in the shock model assumes the Whittet et al. (2004) law.
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