Formation Mechanisms of Cyanopolyynes and Chemical Evolution in the High-Mass Star-Forming Regions $HC_{2n+1}N$ (n = 1,2,3,..)

Kotomi Taniguchi (SOKENDAI/Nobeyama Radio Observatory)

Main Supervisor; Prof. Masao Saito (NAOJ/SOKENDAI)

Tomoya Hirota (NAOJ), Hiroyuki Ozeki (Toho Univ.),

Fumitaka Nakamura (NAOJ), Yusuke Miyamoto, Tetsuhiro Minamidani, Hiroyuki Kaneko (NRO), T. K. Sridharan (CfA),

Kazuhito Dobashi, Tomomi Shimoikura (Tokyo Gakugei Univ.)

Self Introduction

 B.S. Department of Environmental Science, Faculty of Science, Toho University (Supervisor; Hiroyuki Ozeki) 2013 Mar
 "Laboratory spectroscopy, Spectroscopic identification of CH₂IBr"

M.S. Department of Environmental Science, Faculty of Science, Toho University
 /Nobeyama Radio Observatory
 2015 Mar
 "Observations of the ¹³C isotopologues of HC₅N"

2015 Apr. – present SOKENDAI/Nobeyama Radio Observatory (Supervisors; Masao Saito, Tomoya Hirota) 2017 Apr. - JSPS Fellowship (DC2)

Research Interest : Astrochemistry, Star/Planet Formation

Contents

1. Introduction

- ♦ Massive Star Formation Process
- ♦ Astrochemistry
 - & Carbon-Chain Chemistry in Low-Mass Star-Forming Regions
- Chemistry in High-Mass Star-Forming Regions
- 2. Motivation of This Dissertation
- 3. Observations, Results & Discussions
 - ♦ Long Cyanopolyynes around MYSOs
 - ✤ Formation Mechanism of Cyanopolyynes in G28.28-0.36
 - Chemical Evolution in the High-Mass Star-Forming Regions
- 4. Summary

Publications Related to Dissertation

- 1. K. Taniguchi, H. Ozeki, M. Saito et al., ApJ, 817, 147 (2016)
- 2. K. Taniguchi, M. Saito, & H. Ozeki, ApJ, 830, 106 (2016)
- 3. K. Taniguchi, M. Saito, T. Hirota, et al., ApJ, 844, 68 (2017)
- 4. K. Taniguchi, H. Ozeki, & M. Saito, ApJ, 846, 46 (2017)
- 5. K. Taniguchi & M. Saito, PASJ, 69, L7 (2017)
- K. Taniguchi, M. Saito, T. K. Sridharan, & T. Minamidani, accepted by *ApJ*

2 papers are under preparation.

Contents

1. Introduction

- ♦ Massive Star Formation Process
- ♦ Astrochemistry

& Carbon-Chain Chemistry in Low-Mass Star-Forming Regions

- Chemistry in High-Mass Star-Forming Regions
- 2. Motivation of This Dissertation
- 3. Observations, Results & Discussions
 - Long Cyanopolyynes around MYSOs
 - Formation Mechanism of Cyanopolyynes in G28.28-0.36
 - Chemical Evolution in the High-Mass Star-Forming Regions

4. Summary

Massive Star Formation Process

		overlapped			
High-Mass Starless Core (HMSC)	High-Mass Protostellar Object (HMPO)		Hot Core	e Ultracompac HII region (UCHII)	
$n \sim 10^4 10^5 \text{ cm}^{-3},$ $T \sim 15 \text{ K}$	<i>n</i> ~ 10 ⁶ cm <i>T</i> ~ 50 K	-3,	$n > 10^7 \text{ cm}^{-3},$ T > 100 K, 0.1 pc	T	$n \sim 10^4 \mathrm{cm}^{-3},$ T ~100 - 200 K
Without 8.3 μ m emission, With 1.2 mm emission $\sim 10^4$ yr	With 8.3 μ m emis Without 3.6 cm e	ssion, mission	6.7 GHz CH ₃ OH maser	W	ith cm emission
	~ 6 × 1	04 yr	$\sim 4 \times 10^4 \text{ yr}$		$\sim 10^4 \text{ yr}$

Gerner et al. (2014)

Still poorly understood due to observational difficulties (far, small sample, born in cluster)

Astrochemistry & Carbon-Chain Molecules

Chemical composition : a good diagnostic tool for physical conditions & evolutionary stages

Carbon : Contained in ~75% molecules detected in the Universe

Carbon-chain molecules :

- $\checkmark \sim 40\%$ of 200 interstellar molecules
- Provide useful information about star formation process from the foremost stage (e.g., chemical evolution)

Carbon-chain molecules = Important for star formation

Confirmed only in low-mass star-forming regions

The Carbon-Chain Chemistry in Low-Mass Star-Forming Regions (SFRs)

- **1. Chemical Evolutional Indicator** (e.g., Suzuki et al., 1992, Hirota et al., 2009)
- Abundant in young starless cores
- Deficient in evolved star-forming cores
- They are formed by the gas-phase ionmolecule reactions containing C and C⁺
- **2. Warm Carbon Chain Chemistry** (e.g., L1527; Sakai et al., 2008) Methane

 (CH_{A})

dust

Gas-phase reactions Evaporation $T \sim 25 \text{ K}$ Gas-phase reactions $CH_4 + C^+$ Carbon-chain molecules

Chemistry in High-Mass SFRs

				overlapped]	
	High-Mass	High-Mass Protostellar Object (HMPO) $n \sim 10^6 \text{ cm}^{-3},$ $T \sim 50 \text{ K}$			U	ltracompac	t
	Starless Core			Hot Core		HII region	
	(HMSC)					(UCHII)	
	$n \sim 10^4 10^5 \text{ cm}^{-3},$ $T \sim 15 \text{ K}$			$n > 10^7 \text{ cm}^{-3},$ T > 100 K, 0.1	pc 7	$n \sim 10^4 \text{ cm}^{-3},$ 7 ~100 - 200 K	
	Without 8.3 μm emission, With 1.2 mm emission	With 8.3 μ m emissio Without 3.6 cm emi	6.7 GHz CH ₃ C maser	DH W	7ith cm emissio	on	
$\sim 10^4 \text{ yr} \qquad \sim 6 \times 10^4 \text{ yr} \qquad \sim 4 \times 10^4 \text{ yr} \qquad \sim 10^4$						~ 10 ⁴ yr	
		?	Con] (e.g., 0	nplex Organic Molecules CH ₃ OH, CH ₃ CN)		Gerner et al. (2014	!)
	•		N			2018/02/02 •	9

Chemical Evolution in High-Mass Star-Forming Regions

Low-Mass Star-Forming Regions Taurus 100 Starless core Star-forming core ⊙ $N[CCS] (10^{12} \text{ cm}^{-2})$ 10 0.1 100 1000 10000 10 N[NH₃]/N[CCS] T. Hirota *et al.* (2009)

How about High-Mass Star-Forming Regions?

Expectation; Similar to that in low-mass star-forming regions

N[N-bearing species]/*N*[carbon chains]

Previous Researches on Cyanopolyynes in Hot Cores Survey observation of HC_5N (J = 12-11; $E_u = 10.0$ K) toward hot cores associated with 6.7 GHz CH₃OH maser (Green *et al.*, 2014)

Detection Rate = 44% (35/79) (may be ambient cold gas component)

Beam size = 0.95' (0.7 pc at d = 3 kpc)

c.f. Typical hot core size ~ 0.1 pc

Contents

1. Introduction

- ♦ Massive Star Formation Process
- ♦ Astrochemistry
 - & Carbon-Chain Chemistry in Low-Mass Star-Forming Regions
- Chemistry in High-Mass Star-Forming Regions
- 2. Motivation of This Dissertation
- 3. Observations, Results & Discussions
 - Long Cyanopolyynes around MYSOs
 - Formation Mechanism of Cyanopolyynes in G28.28-0.36
 - Chemical Evolution in the High-Mass Star-Forming Regions
- 4. Summary

Motivation & Goal of This Dissertation

Goal : Understand chemical properties of carbon-chain molecules in the high-mass star-forming regions with evolution

1. Are carbon-chain molecules associated with and/or formed around massive young stellar objects (MYSOs)? If they are formed, how are they formed?

Yes: Cyanopolyynes are formed from CH_4/C_2H_2

2. Do carbon-chain molecules have relationship with evolution of massive stars?

Probably Yes: $(N(N_2H^+)/N(HC_3N))$

Focus on cyanopolyyne series ($HC_{2n+1}N$; n=1,2,3,...)

Survive in the hot gas ($T \sim 80$ K) (Hassel *et al.*, 2011)

2/02 • 13

Contents

1. Introduction

- ♦ Massive Star Formation Process
- ♦ Astrochemistry
 - & Carbon-Chain Chemistry in Low-Mass Star-Forming Regions
- Chemistry in High-Mass Star-Forming Regions
- 2. Motivation of This Dissertation
- 3. Observations, Results & Discussions
 - ♦ Long Cyanopolyynes around MYSOs
 - ✤ Formation Mechanism of Cyanopolyynes in G28.28-0.36
 - Chemical Evolution in the High-Mass Star-Forming Regions
- 4. Summary

Long Cyanopolyynes around Massive Young Stellar Objects Clear whether long cyanopolyynes exist in the warm gas around MYSOs

✓ Confirm warm component of HC_5N

✓ Detection of HC₇N

✓ A possibility of the chemical differentiation among MYSOs

Observational Details

Source Selection Selected from HC_5N -detected source list by Green et al. (2014) applying the following criteria:

- 1. Decl. > -21°
- 2. D < 3 kpc
- 3. CH₃CN (hot core tracer) was detected (Purcell et al., 2006)

In order to detect HC₇N, observations in the 27-29 GHz is suitable \bigcirc GBT In order to derive T_{rot} of HC₅N accurately, we need data with a

NRO

wide frequency range

Spectra Obtained with the GBT

Spectra Obtained with the GBT

Spectra Obtained with the GBT

2018/02/02 • 20

Chemical Differentiation among High-Mass Star-Forming Cores

Summary of This Subsection

HC₅N exists in the warm gas around MYSOs abundantly

Are carbon-chain molecules formed at the hot core position?

Formation Mechanism of Cyanopolyynes in G28.28-0.36

Investigate possible triggers of cyanopolyyne formation in this hot core

 ✓ Determination of main formation mechanism of HC₃N from its ¹³C isotopic fractionation

✓ Spatial distributions of cyanopolyynes

Spectra of ¹³C Isotopologues of HC₃N

Possible Formation Pathways of HC₃N

Comparisons with 450 µm Warm Dust Emission

Long cyanopolyynes exist at the hot core region

I'm sorry that I cannot upload figures in this slide, because the paper is under preparation.

Possible Formation Mechanisms in the G28.28-0.36 Hot Core I

Warm Carbon Chain Chemistry (CH₄-origin chemistry)

Possible Formation Mechanisms in the G28.28-0.36 Hot Core II

Chapman's Mechanism (C_2H_2 -origin chemistry) (Chapman *et al.* 2009)

Previous observations support this model
✓ C₂H₂ abundances in the gas phase in hot cores are high
✓ C₂H₂ is thought to be evaporated from grain mantles (Lahuis & van Dishoeck, 2000)

Summary of This Subsection

HC₅N exists in the warm gas around MYSOs abundantly

Chemical Evolution in the High-Mass Star-Forming Regions

Investigate more common characteristics of HC₃N in the early high-mass star-forming regions

✓ $N(HC_3N)$ vs. L/M ratio

✓ Chemical evolutional indicator, $N(N_2H^+)/N(HC_3N)$ ratio

Observational Details

Source Selection

Selected from HMSC list (Sridharan et al., 2005) & HMPO list (Sridharan et al., 2002) applying the following criteria:

- 1. Decl. > -6° for HMSCs & $+6^{\circ}$ for HMPOs
- 2. NH_3 has been detected
- 3. HMPOs located in the same region as the observed HMSCs

Species & Line Selection

 HC_3N : High detection rate & surely excited even in HMSCs N_2H^+ : T_{ex} and N can be derived from its hyperfine splitting & D isotopologues

Correlation between $N(HC_3N)$ and $N(H_2)$

Kendall's tau correlation coefficient (τ) HMSC : +0.16 (p = 38.4 %) \rightarrow Independent HMPO : +0.63 ($p = 5 \times 10^{-4}\%$) \rightarrow Positive correlation

Relationship between Physics & Chemistry in HMPOs

Luminosity-to-mass ratio (L/M): physical evolutional indicator

Chemical Evolutional Indicator

 $N(HC_3N)$ increases $N(N_2H^+)$ slightly decreases

I'm sorry that I cannot upload the figure in this slide, because the paper is under preparation.

Interpretation of Chemical Evolutional Indicator

Increasing $N(HC_3N)$

Decreasing $N(N_2H^+)$

• WCCC (CH₄-origin) • $N_2H^+ + CO \rightarrow N_2 + HCO^+$

mechanism

• $T_{\rm sub}({\rm CO}) = 20 \ {\rm K}$

(Yamamoto et al., 1983)

Chapman's (C₂H₂-origin)
 mechanism

$$T_{\rm dust} \sim 50 - 200 \,\mathrm{K} \,\mathrm{(HMPOs)}$$

(Sridharan et al., 2002)

- $T_{sub}(CH_4) = 25 \text{ K}$
- $T_{sub}(C_2H_2) = 50 \text{ K}$ (Yamamoto *et al.*, 1983)

CH₄, C₂H₂, and CO can evaporate into the gas phase

I'm sorry that I cannot upload the figure, because the paper is under preparation.

Summary of This Subsection

1. *N*(N₂H⁺)/*N*(HC₃N) ratio decreases from HMSCs to HMPOs

2. HC₃N is formed in the warm dense gas around YSOs

Contents

1. Introduction

- Massive Star Formation Process
- ♦ Astrochemistry
 - & Carbon-Chain Chemistry in Low-Mass Star-Forming Regions
- Chemistry in High-Mass Star-Forming Regions
- 2. Motivation of This Dissertation
- 3. Observations, Results & Discussions
 - Long Cyanopolyynes around MYSOs
 - Formation Mechanism of Cyanopolyynes in G28.28-0.36
 - Chemical Evolution in the High-Mass Star-Forming Regions

4. Summary

Summary of the Cyanopolyyne Chemistry in High-Mass Star-Forming Regions

Summary

- Are carbon-chain molecules associated with and/or formed around massive young stellar objects (MYSOs)?
 If they are formed, how are they formed?
 - Yes : Cyanopolyynes are formed from CH_4 and/or C_2H_2 evaporated from grain mantles around MYSOs.
- 2. Do carbon-chain molecules have relationship with evolution of massive stars?
 - Probably Yes : The $N(N_2H^+)/N(HC_3N)$ ratio decreases from HMSCs to HMPOs.

Observations of cyanopolyynes = a good tool for investigation of massive star formation process successively

Thank you very much for your attention 2018/02/02•

40