星形成ゼミ The Star Formation Newsletter 302 22~29

徳田一起 (大阪府立大学/NAOJ)

22	The stellar IMF from Isothermal MHD Turbulence
23	Where can a Trappist-1 planetary system be produced?
24	Evolution of Magnetic Fields in Collapsing Star-forming Clouds under Different Environments
25	Probing Episodic Accretion in Very Low Luminosity Objects
26	CO and dust properties in the TW Hya disk from high-resolution ALMA observations
27	The Extraordinary Outburst in the Massive Protostellar System NGC6334I-MM1: Emergence of Strong 6.7 GHz Methanol Masers
28	V2492 Cygni: Optical BVRI variability during the period 2010-2017
29	Dust Coagulation Regulated by Turbulent Clustering in Protoplanetary Disks

22 (1) The Stellar IMF from Isothermal MHD Turbulence

Troels Haugbølle¹, Paolo Padoan^{2,3}, and Åke Nordlund¹

背景

- Turbulent fragmentation
- IMFを再現するには乱流だけでなく磁場/stellar feedback が重要
- Padoan+14bでは等温MHD乱流がIMFを再現できた
- ・最近sink particle のモデルが新しくなった (Frimann+16b, Jensen+17)
- ・本論文ではそれらを取り入れ、パラメータ依存性を調べる

初期条件 Mass: ~3000 Mo, 大きさ4pc, 乱流の線幅: 音速の10倍 (Alfvén速度の10倍)

	Run parameters				Creation of Sinks				Accretion to Sinks										
Run	Root Grid	N_{AMR}	Δx	L_{J}	$\rho_{\rm ref}$	$M_{ m box}$ M $_{ m o}$	$lpha_{ m vir}$	$t_{ m end} \ { m Mvr}$	SFE	N_{sink}	$L_{\rm J,s}$	$ ho_{ m s}$ cm ⁻³	ρ_{s}	$r_{ m ex} \ \Delta x$	$ ho_{ m acc}$ cm ⁻³	$\rho_{\rm acc}$	$ ho_{ m th}$	$r_{ m acc} \ \Delta x$	$\epsilon_{ m acc}$
	Gina		uu		\P/			iniyi					\P/			\P/	<i>P</i> 5	 w	
16	16 ³	6	800	2.0	2	3000	0.83	1.6	13%	108	2	$6.6 imes 10^6$	$8.3 imes 10^3$	8	4227	5.3	2	4	0.5
32	32 ³	6	400	2.5	5	3000	0.83	1.8	13%	169	2	$2.6 imes10^7$	$3.3 imes 10^4$	8	4227	5.3	2	4	0.5
low	64^{3}	6	200	3.6	10	3000	0.83	2.4	13%	279	2	1.1×10^8	$1.3 imes 10^5$	8	4227	5.3	2	4	0.5
med	128^{3}	6	100	7.2	10	3000	0.83	2.5	13%	363	2	$4.2 imes 10^8$	$5.3 imes 10^5$	8	4227	5.3	2	4	0.5
high	256^{3}	6	50	14.4	10	3000	0.83	2.5	13%	410	2	1.7×10^9	$2.1 imes 10^6$	8	4227	5.3	2	4	0.5
light	256^{3}	6	50	14.4	20	1500	1.67	4.0	5%	86	2	1.7×10^9	$4.3 imes 10^6$	8	4227	5.3	2	4	0.5
heavy	256^{3}	6	50	14.4	5	6000	0.42	0.7	5%	614	2	$1.7 imes 10^9$	1.1×10^6	8	4227	5.3	2	4	0.5
massive	256^{3}	6	50	14.4	2.5	12000	0.21	0.3	3%	1223	2	1.7×10^9	$5.3 imes 10^6$	8	4227	5.3	2	4	0.5

Table 1 Numerical parameters of the large-scale runs exploring convergence and the dependence on α_{vir}

22 (1)

図4: resolutionを上げたら IMFのpeakが再現できた!? (注: high以外は見やすくす るためにシフトさせている) IMFのturn over, m_peakの決まり方

大きい)ほどTurn over が小さい

22 (3)

IMFの環境依存性 Molecular cloud はLarson 則に従うが、 無視できないscatter があるので、 IMFのpeakも変わりうる

$$m_{\rm peak} \approx 1.124 \, M_{\rm tot} \mathcal{M}_{\rm s}^{-4} \alpha_{\rm vir}^{3/2},$$

銀河系の外側と内側で どのようにIMFのpeakが変わるか観測さ れている分子雲のmassと速度より算出 IMFの時間依存性

- 10 Moの星が95%の質量になるのには
 1Myr以上必要
- ・IMFのpeakが最終的な値になるには 1Myr以上経過してから
- ・Salpeterのslopeを再現するには2 Myr

25 (1) PROBING EPISODIC ACCRETION IN VERY LOW LUMINOSITY OBJECTS

TIEN-HAO HSIEH^{1,2}, NADIA M. MURILLO³, ARNAUD BELLOCHE⁴, NAOMI HIRANO¹, CATHERINE WALSH⁵, EWINE F. VAN DISHOECK^{3,6}, SHIH-PING LAI^{1,2}

キーワード

- VeLLOs (Very Low-Luminosity Object)
- ALMA 観測
- Episodic accretion (accretion burst)

強調したい結果と示唆 CO snow lineの位置が、現在の星の 輝度で予想される位置よりも遠い 70%のVeLLOがaccretion burst を経験

ALMAC	の観測
-------	-----

天体数	8個
Lint	0.02~0.09
距離	125~300 pc
観測輝線	N2H+, 13CO, C18O, C17O, dust cont.
空間分解能	1.2"~2.9"

グレー: 3mm dust, C18O (1-0), 13CO(1-0)

25 (2)

COスノーラインとN2H+の関係の図 TW Hya (Qi+2013)

Conclusions

•7個中5~6個がaccretion burst Class 0/I (20~50%)よりも多い COがfreeze outするのが1万年 だとすると、1.2~1.4 万年

CO snow lineはバースト後も静的なので、burst luminosityを見積もるのに使える

・episodic accretion はClass I stage によく 起こるというsimulation とは不整合 ・Multiplicity は低い(~250 AU分解能)

グレー: 13CO(1-0), N2H+

25 (3)

CO AND DUST PROPERTIES IN THE TW HYA DISK FROM HIGH-RESOLUTION ALMA OBSERVATIONS 26 (1)

JANE HUANG¹, SEAN M. ANDREWS¹, L. ILSEDORE CLEEVES^{1,2}, KARIN I. ÖBERG¹, DAVID J. WILNER¹, XUENING BAI^{1,3,4}, TIL BIRNSTIEL⁵, JOHN CARPENTER⁶, A. MEREDITH HUGHES⁷, ANDREA ISELLA⁸, LAURA M. PÉREZ⁹, LUCA RICCI⁸, ZHAOHUAN ZHU^{10}

10

that the emission morphology can be reasonably reproduced with a 12CO column density profile featuring a steep decrease at $r \approx 15$ AU and a secondary bump peaking at r ≈ 70 AU.

COの輝度分布とradial distribution

20

0

50

100

150

Radius [AU]

200

250

10 AU

-2

2

0

Δα ['']

27 (1) THE EXTRAORDINARY OUTBURST IN THE MASSIVE PROTOSTELLAR SYSTEM NGC6334I-MM1: EMERGENCE OF STRONG 6.7 GHZ METHANOL MASERS

T. R. HUNTER¹, C. L. BROGAN¹, G. C. MACLEOD², C. J. CYGANOWSKI³, J. O. CHIBUEZE^{4,5,6}, R. FRIESEN^{1,7}, T. HIROTA⁸, D. P. SMITS⁹, C. J. CHANDLER¹⁰, R. INDEBETOUW^{1,11}

submitted to ApJ on November 13, 2017; in revised form on January 4, 2018; accepted on January 6, 2018

2015年に単一鏡のモニター観測(Hartebeesthoek Radio Observatory) で強いフレア現象が見つかった(MacLeod+18) =>JVLA を使ったフォローアップ観測 (空間分解能~500 au) メタノール, OHメーザーの同時観測

 ・NGC6334I (大質量星形成領域) (サブ)ミリ波源MM1で起こった
 2015年のメタノールメーザーのアウトバーストを報告
 30年のメーザーの観測で初めて
 ・ホットコアMM2とUCHIIのMM3に
 は6.7 GHz Class II メタノールメーザーが知られていた

(a) +: メタノールメーザー 1998年6月, x: 2011年9月 (ATCAの観測)
 (b) +: メタノールメーザー 2016年5月 (VLAの観測)
 =>マークの大きさは強さを表す

27 (2)

・MM1の最も強いメー
・ザーはダストキャビティ
に存在
・dust が最も強いMM1A,
1B, 1Dにはメーザーがない

アウトバースト後のダス トの温度の増加による Radiative pumping + Infrared photon propagation cavities の 存在

熱的メタノール輝線の高 い柱密度(ALMAの観測)

27 (3)

非熱的電波源CM2にも新しいメーザー源 6.035, 6.030 GHz のOHのライン ゼーマン効果で磁場測定: +0.5~3.7 mG

UCHII, MM3 (OHメーザーの観測) 視線方向の磁場 :-2 ~ -3 mG => 南北で磁場が反転!?

23 Where can a Trappist-1 planetary system be produced?

Thomas J. Haworth¹, Stefano Facchini², Cathie J. Clarke³, Subhanjoy Mohanty¹

¹ Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK;
 ² Max-Planck-Institut f
ür Extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany;
 ³ Institute of Astronomy, Madingley Rd, Cambridge, CB3 0HA, UK

E-mail contact: t.ha
worth $at \ {\rm imperial.ac.uk}$

We study the evolution of protoplanetary discs that would have been precursors of a Trappist-1 like system under the action of accretion and external photoevaporation in different radiation environments. Dust grains swiftly grow above the critical size below which they are entrained in the photoevaporative wind, so although gas is continually depleted, dust is resilient to photoevaporation after only a short time. This means that the ratio of the mass in solids (dust plus planetary) to the mass in gas rises steadily over time. Dust is still stripped early on, and the initial disc mass required to produce the observed 4 M_{\oplus} of Trappist-1 planets is high. For example, assuming a Fatuzzo & Adams (2008) distribution of UV fields, typical initial disc masses have to be >30per cent the stellar (which are still Toomre Q stable) for the majority of similar mass M dwarfs to be viable hosts of the Trappist-1 planets. Even in the case of the lowest UV environments observed, there is a strong loss of dust due to photoevaporation at early times from the weakly bound outer regions of the disc. This minimum level of dust loss is a factor two higher than that which would be lost by accretion onto the star during 10 Myr of evolution. Consequently even in these least irradiated environments, discs that are viable Trappist-1 precursors need to be initially massive (>10per cent of the stellar mass).

Accepted by MNRAS

http://arxiv.org/pdf/1801.05822

Trappist-1:木星質量程度の赤色矮星 (惑星が確認されている) 質量降着中であり、異なった外部輻射場の環境におけるdiskの進化を調査 =>Trappist-1 systemの前駆体となるdiskは最初の質量は大きい必要がある (星の質量の10%以上)

24 Evolution of Magnetic Fields in Collapsing Star-forming Clouds under Different Environments

Koki Higuchi¹, Masahiro N. Machida¹ and Hajime $Susa^2$

¹ Department of Earth and Planetary Sciences, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan;
 ² Department of Physics, Konan University, Okamoto, Kobe 658-8501, Japan

E-mail contact: k.higuchi. 521 at s.kyushu-u.ac.jp

In nearby star-forming clouds, amplification and dissipation of the magnetic field are known to play crucial roles in the star-formation process. The star-forming environment varies from place to place and era to era in galaxies. In the present study, amplification and dissipation of magnetic fields in star-forming clouds are investigated under different environments using magnetohydrodynamics (MHD) simulations. We consider various star-forming environments in combination with the metallicity and the ionization strength, and prepare prestellar clouds having two different mass-to-flux ratios. We calculate the cloud collapse until protostar formation using ideal and non-ideal (inclusion and exclusion of Ohmic dissipation and ambipolar diffusion) MHD calculations to investigate the evolution of the magnetic field. We perform 288 runs in total and show the diversity of the density range within which the magnetic field effectively dissipates, depending on the environment. In addition, the dominant dissipation process (Ohmic dissipation or ambipolar diffusion) is shown to strongly depend on the star-forming environment. Especially, for the primordial case, magnetic field rarely dissipates without ionization source, while it efficiently dissipates when very weak ionization sources exist in the surrounding environment. The results of the present study help to clarify star formation in various environments.

- ・星形成クラウドの磁場の増幅と散逸を様々な環境でMHD simulationで計算
- ・用意した環境: 異なった金属量+電離度, 2つの異なったmass-to-flux ratioのprestellar core
- ・原始星が誕生するまで計算:理想,非理想MHD(オーム散逸, ambipolar diffusion)の両方
 合計で288 runs,オーム散逸/ ambipolar diffusionは環境依存が強い
 磁場は電離源がなければなかなか散逸しない
 周囲に弱くても電離源があれば効率よく散逸する

8 V2492 Cygni: Optical BVRI variability during the period 2010-2017

Sunay I. Ibryamov¹, Evgeni H. Semkov² and Stoyanka P. Peneva²

¹ Department of Physics and Astronomy, University of Shumen, 115, Universitetska Str., 9700 Shumen, Bulgaria; ² Institute of Astronomy and National Astronomical Observatory, Bulgarian Academy of Sciences, 72, Tsarigradsko Shose Blvd., 1784 Sofia, Bulgaria

E-mail contact: sibryamov at shu.bg

Results from BVRI photometric observations of the young stellar object V2492 Cyg collected during the period from August 2010 to December 2017 are presented. The star is located in the field of the Pelican Nebula and it was discovered in 2010 due to its remarkable increase in the brightness by more than 5 mag in R-band. According to the first hypothesis of the variability V2492 Cyg is an FUor candidate. During subsequent observations it was reported that the star shows the characteristics inherent to EXor- and UXor-type variables. The optical data show that during the whole time of observations the star exhibits multiple large amplitude increases and drops in the brightness. In the beginning of 2017 we registered a significant increase in the optical brightness of V2492 Cyg, which seriously exceeds the maximal magnitudes registered after 2010.

Accepted by Publications of the Astronomical Society of Australia (PASA)

https://arxiv.org/pdf/1801.05482

原始星 V2492 Cygni (パイプ星雲に存在)の2011年8月~2017年12月までのvariability の観測 2010年にR-bandで急に明るくなって(>5mag)発見された

FUor candidateとされていた。EXor, Uxor-type の変動を持つと報告されていた 本論文の結果

- 全期間の強度の調べると、複数の大きな強度の減少が見られた。
- ・2017年の最初に今まで報告されていたよりも明るくなった

28

29 Dust Coagulation Regulated by Turbulent Clustering in Protoplanetary Disks Takashi Ishihara¹, Naoki Kobayashi², Kei Enohata², Masayuki Umemura³, Kenji Shiraishi⁴

¹ Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; ² Department of Computational Science and Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan; ³ Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan; ⁴ Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8601, Japan

E-mail contact: ishihara at ems.okayama-u.ac.jp

The coagulation of dust particles is a key process in planetesimal formation. However, the radial drift and bouncing barriers are not completely resolved, especially for silicate dust. Since the collision velocities of dust particles are regulated by turbulence in a protoplanetary disk, the turbulent clustering should be properly treated. To that end, direct numerical simulations (DNSs) of the Navier Stokes equations are requisite. In a series of papers, Pan & Padoan used a DNS with the Reynolds number $Re \sim 1000$. Here, we perform DNSs with up to Re = 16100, which allow us to track the motion of particles with Stokes numbers of 0.01 < St < 0.2 in the inertial range. By the DNSs, we confirm that the rms relative velocity of particle pairs is smaller by more than a factor of two, compared to those by Ormel & Cuzzi (2007). The distributions of the radial relative velocities are highly non-Gaussian. The results are almost consistent with those by Pan & Padoan or Pan et al. at low-Re. Also, we find that the sticking rates for equal-sized particles are much higher than those for different-sized particles. Even in the strong-turbulence case with α -viscosity of 10^{-2} , the sticking rates are as high as $\gtrsim 50\%$ and the bouncing probabilities are as low as $\sim 10\%$ for equal-sized particles of $St \leq 0.01$. Thus, the turbulent clustering plays a significant role for the growth of cm-sized compact aggregates (pebbles) and also enhances the solid abundance, which may lead to the streaming instability in a disk.

Accepted by ApJ

http://arxiv.org/pdf/1801.08805